
Software
Bill of Materials

(SBOM)

What, why
and how?

Starter guide

Use this figure
to browse through
this start guide

Software Bill of Materials (SBOM) | What, why and how?

1 2

Intro

Starter guide Software Bill of Materials (SBOM) | What, why and how?

Introduction
Over the past few years, a succession of major supply chain

incidents such as SolarWinds and Log4J have made it painfully

apparent that many organisations have insufficient

understanding of the dependencies within their software supply

chain [1]. Software Bill of Materials (SBOM) is an important

building block in tackling this problem. By using SBOMs,

organisations can maintain a formalised and permanently up to

date overview of all the software used and their dependencies.

Insight into the software supply chain can serve various purposes

within organisations. Among others, the previous studies by

Capgemini [2] and by the NTIA [3] provide a detailed overview.

The two main reasons for organisations to work on their SBOMs

right now are

• Vulnerability Management: creating the automated link

between public vulnerabilities and vulnerable products, and

• Compliance Management: demonstrably complying with

statutory and other requirements that offer insight into

software dependencies.

In this guide, the focus is on the use of SBOM for vulnerability

management, because that is the area in which SBOM delivers

the greatest added value. However, from this perspective it is

also important to focus attention on developments in the field of

legislation and regulations so that these can be included in

reaching agreements and selecting tooling. The detail block on

this page briefly discusses the most important

developments.

Despite the fact that SBOM is widely talked about, the term still

raises many questions. It is often unclear to organisations

precisely what SBOM can mean, what is required to successfully

integrate SBOM and how SBOM relates to other elements such as

the Vulnerability Exploitability eXchange (VEX) and the Common

Security Advisory Framework (CSAF) This starter guide was

developed to assist managers who are involved in the

Introduction �

Reader’s guide

1 2

Intro

Starter guide Software Bill of Materials (SBOM) | What, why and how?

Introduction
Over the past few years, a succession of major supply chain

incidents such as SolarWinds and Log4J have made it painfully

apparent that many organisations have insufficient

understanding of the dependencies within their software supply

chain [1]. The Software Bill of Materials (SBOM) is an important

building block in tackling this problem. Using SBOMs,

organisations can maintain a formalised and permanently up to

date overview of all the software used and their dependencies.

An insight into the software supply chain can serve different

applications within an organisation. Among others, the previous

study by Capgemini [2] and by the NTIA [3]. provide a detailed

overview. The two main reasons for organisations to work on

their SBOMs right now are

• Vulnerability Management: creating the automated link

between public vulnerabilities and vulnerable products, and

• Compliance Management: demonstrably complying with

statutory and other requirements that offer an insight into

software dependencies.

In this guide, the focus is on the use of SBOM for vulnerability

management, because that is the area in which SBOM delivers

the greatest added value. However, from this perspective it is

also important to focus attention on developments in the field of

legislation and regulations so that these can be included in

reaching agreements and selecting tooling. The detail block on

this page briefly discusses the most important

developments.

Despite the fact that SBOM is widely talked about, the term still

raises many questions. It is often unclear to organisations

precisely what SBOM can mean, what is required to successfully

integrate SBOM and how SBOM relates to other elements such as

the Vulnerability Exploitability eXchange (VEX) and the Common

Security Advisory Framework (CSAF) This starter guide was

developed to assist managers who are involved in the

Introduction �

Reader’s guide

Detail block:
Legislation and regulations relating to SBOM

Since 2021, the Executive Order on Improving the Nation’s Cybersecurity [19] requires software supplied to the US Federal

Government to include an SBOM. The EU is working on a similar regulation: the Cyber Resilience Act (CRA) [18]. This Act is expected

to be approved in mid-2023 and will make it compulsory to generate SBOMs for software components in products with digital

elements, within the EU. In addition, sector-specific agreements are currently being reached within various sectors (for example

healthcare and automotive) regarding the use of SBOMs. Finally, the importance of SBOMs is also explicitly referred to in the ISO/IEC

27036 standaard Cybersecurity – Supplier relationships currently being developed.

At present, it is expected to be several more years before organisations actually must comply with the CRA. Nevertheless, experts at

Synopsys [15] already advise software suppliers to check which requirements their SBOMs will have to comply with in the future.

The development of a software product is often a multiyear process and an understanding of the requirements could represent an

important factor in selecting tools or equipping processes.

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022PC0454
https://www.iso.org/standard/82890.html
https://www.iso.org/standard/82890.html

1 2

Intro

Starter guide Software Bill of Materials (SBOM) | What, why and how?

cybersecurity of their organisation to understand these issues.

In this guide, NCSC-NL and TNO provide answers to frequently

asked questions and offer clear recommendations for starting

with SBOM.

The information in this guide is based on desk research,

a workshop with representatives of the target group for this

guide and interviews with organisations that have already gained

experience with the use of SBOM: Philips, ABB and Siemens.

A discussion was also held with Allan Friedman, representative of

the American Cybersecurity and Infrastructure Security Agency

(CISA). In the research, sources made available by the American

National Telecommunications Information Administration (NTIA)

were regularly consulted. Finally, this guide builds on the results

of a previous study by the NCSC and Capgemini: Using the

Software Bill of Materials for Enhancing Cybersecurity [2].

Introduction �

Reader’s guide

Reader's guide

https://ntia.gov/page/software-bill-materials
https://english.ncsc.nl/research/publications/publications/2021/february/4/using-the-software-bill-of-materials-for-enhancing-cybersecurity
https://english.ncsc.nl/research/publications/publications/2021/february/4/using-the-software-bill-of-materials-for-enhancing-cybersecurity

Intro

Starter guide Software Bill of Materials (SBOM) | What, why and how?

Reader’s guide
The next chapter What is an SBOM? offers a short description of

what an SBOM looks like and what choices have to be made

regarding the SBOM. The next chapter SBOM in the organisation

provides an overview of the important steps that must be taken

when using SBOMs for vulnerability management. These steps

are further elaborated in the subsequent chapters. The process

starts with acquiring and/or supplying SBOMs to internal or

external parties in the chapter Producing, Managing & Sharing

SBOMs. The next chapter describes how these SBOMs can be

deployed for vulnerability management under the heading

Deploying SBOMs for Vulnerability Management. The detail blocks

that appear throughout this document provide additional

information about specific subjects, including links to external

sources.

Introduction

Reader’s guide �

What is an SBOM?

01.What is an SBOM?

Starter guide Software Bill of Materials (SBOM) | What, why and how?

What is an SBOM?
An SBOM describes the components that make up a

piece of software and the relationships between those

components. It is a nested list of software components

comparable to the list of ingredients on food products.

One vital aspect of this list is that the structure is

formalised (i.e. machine readable) thereby opening the

way for automation. Figure 1 is an example of a simple

SBOM. The concept of a component list is neither new nor

specific to software. Alongside the SBOM, in certain

sectors a Hardware Bill of Materials (HBOM) or

Component Bill of Materials (CBOM) are also used.

These two can also play a role in the framework of

vulnerability management and supply chain security,

but are beyond the scope of this starter guide.

This chapter starts by providing an overview of the

information that should be recorded in an SBOM, before

considering which standards are currently available.

What is an SBOM? �

What is in an SBOM?

SBOM Standards

� Figure 1: Example of an SBOM | Source: CycloneDX Use Cases

What is in an SBOM?

https://cyclonedx.org/use-cases/#known-vulnerabilities

01.What is an SBOM?

Starter guide Software Bill of Materials (SBOM) | What, why and how?

What is in an SBOM?
At the time of writing, there is no unequivocal description of

exactly what an SBOM should look like, and which elements an

SBOM must contain. There are different standards, each with

their own structure and mandatory fields. The various

standardisation and regulation initiatives have also only revealed

a limited number of requirements. The update to the ISO/IEC

27036-3 1 standard currently being developed describes a set of

essential elements that should appear in an SBOM. This set is

more detailed than the minimum set of requirements specified

by the American government [4] but does contain a number of

elements which increase the possibility for effectively deploying

SBOMs. The essential elements are:

• Author, the person/organisation that generated the SBOM

• Timestamp, for the production or revision of the SBOM

• Life cycle, where in the software development process the

SBOM was generated (pre-build, build and post-build)

1 At the time of writing, this standard is still in the review process
and has the status Final Draft International Standard (FDIS).

• For each component

 - Supplier name, the person/organisation supplying the

comp

 - Component name, this can be described in a number of

different ways

 - Version

 - Cryptographic hash, hash of the component which among

others can be used for identifying the component

 - Unique identifier

 - Relationships, the relationships between components

 - Source, where the component was obtained (e.g. GitHub or

a specific package manager)

The unique identifier element is of real importance in the

(automated) use of SBOMs, but here too there is no uniform

standard available as yet. The detail block on this page

describes this problem more precisely. In practice, this means

that when reaching agreements on the content of an SBOM,

specific attention must also be paid to how the unique identifier

element will be implemented.

What is an SBOM?

What is in an SBOM? �

SBOM Standards

SBOM Standards

https://www.iso.org/standard/82890.html
https://www.iso.org/standard/82890.html

01.What is an SBOM?

Starter guide Software Bill of Materials (SBOM) | What, why and how?

What is in an SBOM?
At the time of writing, there is no unequivocal description of

exactly what an SBOM should look like, and which elements an

SBOM must contain. There are different standards, each with

their own structure and mandatory fields. The various

standardisation and regulation initiatives have also only revealed

a limited number of requirements. The update to the ISO/IEC

27036-3 1 standard currently being developed describes a set of

essential elements that should appear in an SBOM. This set is

more detailed than the minimum set of requirements specified

by the American government [4] but does contain a number of

elements which increase the possibility for effectively deploying

SBOMs. The essential elements are:

• Author, the person/organisation that generated the SBOM

• Timestamp, for the production or revision of the SBOM

• Life cycle, where in the software development process the

SBOM was generated (pre-build, build and post-build)

1 At the time of writing, this standard is still in the review process
and has the status Final Draft International Standard (FDIS).

• For each component

 - Supplier name, the person/organisation supplying the

comp

 - Component name, this can be described in a number of

different ways

 - Version

 - Cryptographic hash, hash of the component which among

others can be used for identifying the component

 - Unique identifier

 - Relationships, the relationships between components

 - Source, where the component was obtained (e.g. GitHub or

a specific package manager)

The unique identifier element is of real importance in the

(automated) use of SBOMs, but here too there is no uniform

standard available as yet. The detail block on this page

describes this problem more precisely. In practice, this means

that when reaching agreements on the content of an SBOM,

specific attention must also be paid to how the unique identifier

element will be implemented.

What is an SBOM?

What is in an SBOM? �

SBOM Standards

SBOM Standards

Detail block:
Unique identification for software

To enable the effective use of SBOMs, it is essential that software

components are identified in the same way, everywhere. Only

then a software componant from an SBOM can be automatically

linked to known vulnerabilities, licences and other relevant

information. If this does not happen, false positives or false

negatives can arise. In the case of a false positive, a match is made

between information that is not actually related. If this happens

when searching for vulnerabilities, a component can wrongly be

identified as vulnerable. In the case of a false negative, actually no

match is made where it should be. This means that a component

may appear to not be vulnerable, while in fact it is.

Unfortunately, at present, too many different ways of identifying

software components are in use. The most commonly used

methods are:

• Coordinates

• Package URL (PURL)

• Common Platform Enumeration (CPE)

• Software Identification (SWID) tagging

• Cryptographic hash functions (SHA-1, SHA-2, SHA-3,

BLAKE2b, BLAKE3)

The use of coordinates is described as: group, name and version.

An example is "group": "org.example", "name": "sample-library",

"version": "1.0.0.

PURL was the result of an initiative to introduce a standard

method of identifying software packages, independently of

the context of a specific package manager. It makes use of

a simple syntax in which a number of components are

combined to form a URL: scheme:type/namespace/name@

version?qualifiers#subpath. This results in identifiers such as:

pkg:maven/org.apache.xmlgraphics/batik-anim@1.9.1?packaging

=sources.

CPE is a commonly used standard, in particular in combination

with vulnerability and incident management. However, the

process surrounding the setting of a CPE is unfortunately

vulnerable to human error. In addition, the granularity of the

CPE approach is too limited in certain situations to determine

whether a software component actually contains a vulnerability.

For that reason, the SBOM Forum recommends switching to the

use of PURL [17].

1 2

Close detail block

https://github.com/package-url/purl-spec
https://nvd.nist.gov/products/cpe
https://www.iso.org/standard/65666.html

01.What is an SBOM?

Starter guide Software Bill of Materials (SBOM) | What, why and how?

What is in an SBOM?
At the time of writing, there is no unequivocal description of

exactly what an SBOM should look like, and which elements an

SBOM must contain. There are different standards, each with

their own structure and mandatory fields. The various

standardisation and regulation initiatives have also only revealed

a limited number of requirements. The update to the ISO/IEC

27036-3 1 standard currently being developed describes a set of

essential elements that should appear in an SBOM. This set is

more detailed than the minimum set of requirements specified

by the American government [4] but does contain a number of

elements which increase the possibility for effectively deploying

SBOMs. The essential elements are:

• Author, the person/organisation that generated the SBOM

• Timestamp, for the production or revision of the SBOM

• Life cycle, where in the software development process the

SBOM was generated (pre-build, build and post-build)

1 At the time of writing, this standard is still in the review process
and has the status Final Draft International Standard (FDIS).

• For each component

 - Supplier name, the person/organisation supplying the

comp

 - Component name, this can be described in a number of

different ways

 - Version

 - Cryptographic hash, hash of the component which among

others can be used for identifying the component

 - Unique identifier

 - Relationships, the relationships between components

 - Source, where the component was obtained (e.g. GitHub or

a specific package manager)

The unique identifier element is of real importance in the

(automated) use of SBOMs, but here too there is no uniform

standard available as yet. The detail block on this page

describes this problem more precisely. In practice, this means

that when reaching agreements on the content of an SBOM,

specific attention must also be paid to how the unique identifier

element will be implemented.

What is an SBOM?

What is in an SBOM? �

SBOM Standards

SBOM Standards

The Software Identification (SWID) Tag is an ISO-standaard

[16] which was already defined in 2012 as a means of

maintaining an overview of the software installed within an

organisation. In practice, in the context of SBOM, SWID Tags are

primarily used as a means of identifying software components

within the CyclonDX or SPDX format, which is explained in the

section on SBOM Standards.

The use of hashes is a well-known means of verifying that two

pieces of code are identical. In practice, this proves difficult to

use because different hash functions are used or because it is

unclear precisely which components of a package have been

included in the hash. For example, is the SBOM itself part of the

hash if delivered as part of the package, or is it not?

In addition to the use of different standards, the names used by

suppliers for software are also subject to changes, for example

as a result of mergers and acquisitions between the

organisations, or as a result of new project forks.

The conclusion is that there is still a long way to go before a

uniform global approach will be introduced for identifying

software components. Until that time, the NTIA recommends

applying the following principles [14]:

• If a uniform method already exists for identifying a

component, follow this method. Examples are names from

package managers that use unique identifiers or names from

suppliers that allocate clear identifiers to their software

• If no uniform method exists yet, choose an existing,

commonly used standard to describe a component.

1 2

Close detail block

https://www.iso.org/standard/65666.html

SBOM in the organisation

01.What is an SBOM?

Starter guide Software Bill of Materials (SBOM) | What, why and how?

SBOM Standards
At the time of writing this guide, there are two widely used SBOM

standards [5] :

• CyclonDX, a lightweight open-source standard managed by

the CyclonDX working group, which had its roots in the Open

Worldwide Application Security Project (OWASP) community;

• Software Package Data Exchange (SPDX), an ISO-certified

open-source standard (ISO/IEC 5962:2021) managed by the

Linux Foundation Project.

As yet, there is no consensus within the SBOM community on

which standard can best be chosen. In practice, the standards are

interoperable because there is sufficient overlap between the

different fields and the essential elements can be described in all

standards [5]. The best practice is to support both SPDX and

CyclonDX. There are tools that can handle both formats and tools

that can convert one format into the other. This may result in the

loss of additional information, so it is important to investigate in

advance which information is important for your own

organisation.

What is an SBOM?

What is in an SBOM?

SBOM Standards �

https://cyclonedx.org/
https://spdx.dev/
https://www.iso.org/standard/81870.html

02.SBOM in
the organisation

Starter guide Software Bill of Materials (SBOM) | What, why and how?

SBOM in an organisation
Now the content of an SBOM is

clear, the next question is: how

can I use it in my organisation?

To eventually be able to use

SBOMs for vulnerability

management, a number of

processes must be set up.

Figure 2 provides a diagrammatic

overview of the use of SBOMs for

vulnerability management within

an organisation and the various

steps that must be taken.

This chapter describes these steps

in brief, and the details are further

elaborated in the next two

chapters.

SBOM in an
organisation �

SBOM processes

� Figure 2: Overview of SBOM processes within the organisation

SBOM processes

1 2

02.SBOM in
the organisation

Starter guide Software Bill of Materials (SBOM) | What, why and how?

SBOM processes
Precisely which processes need to be equipped to implement

SBOM depends heavily on the organisation-specific context.

Nevertheless, broadly speaking, all organisations will have to

organise the same two processes:

• Obtaining the necessary information, which includes the

production, management and eventual resharing of SBOMs.

• The deployment of the information obtained, which

within the context of this guide is limited to the deployment

of SBOMs for vulnerability management.

SBOMs can be obtained in two ways:

• The SBOM is provided by the software supplier. This may

either be a commercial software supplier or an open-source

community.

• The SBOM must be generated by the organisation itself. This

is necessary for software developed in-house, or for software

for which no SBOM is (currently) available such as legacy

software or open-source code. For software currently under

development, this process will often be carried out by

development teams, but for legacy software, the task could

be entrusted to a different team.

Many organisations will obtain their SBOMs via both routes. After

an SBOM has been produced, it must be made available within the

organisation. This sometimes requires a processing stage in order

to retrieve the relevant information from the supplied SBOM.

Ideally, SBOMs are then made available at a central location for all

parties that have to use it. In the case of vulnerability manage-

ment, this will often be the Security Operations Center (SOC).

Because the software or configuration can be updated, any

changes must be recorded in a new SBOM. Ensuring that each

version of the software and the configuration has the appropriate

SBOM is therefore an important aspect of integrating SBOMs in

the organisation. If the organisation supplies software to third

parties, the relevant SBOMs must also be shared with those

parties. Here too, a processing stage may be necessary to deter-

mine which information needs to be shared with which parties.

SBOM in an organisation

SBOM processes �

1 2

02.SBOM in
the organisation

Starter guide Software Bill of Materials (SBOM) | What, why and how?

To effectively deploy SBOMs for vulnerability management, the

recommendation is to integrate this use with already existing

processes as far as possible. In these processes, SBOM will above

all be useful in creating an overview and insight more quickly.

This information can then be used in making risk assessments

and arriving at mitigating measures.

SBOM roles

Because SBOM affects so many aspects of an organisation,

different departments and roles within the organisation will be

involved in the production or use of an SBOM [2]. Departments

such as purchasing, contract management and legal will often be

responsible for reaching agreements with external parties

regarding the receipt and delivery of SBOMs. Departments such

as IT management and development will play a driving role in

generating SBOMs and keeping them up to date, while the

security teams will be the most important users when it comes to

deploying SBOMs for vulnerability management. Agreeing on the

parameters for successfully matching up these processes is

essential. It is therefore advisable to reach clear agreements on

how and when the various teams will be involved, for example

using RACI tables.

Producing, Managing & Sharing SBOMs

SBOM in an organisation

SBOM processes �

03.Producing, Managing
& Sharing SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

Producing, Managing & Sharing SBOMs
This chapter describes what an organisation needs to do

in order to successfully set up the process of obtaining,

managing and sharing (making available) SBOMs.

Before you start with the task of producing SBOMs, a

number of steps must first be completed. The various

steps are briefly listed below and are further elaborated

in a separate section.

1. Arrange the processes for obtaining SBOMs:

 - Reach clear agreements with the parties

(internal or external) supplying the SBOMs.

 - If relevant, organise the generation of SBOMs for

software developed in-house and open-source

software.

2. Organise a process (including the necessary tooling)

for processing and managing the received SBOMs.

3. Organise the distribution of SBOMs to third parties.

4. Evaluate the previous steps and make adjustments

where necessary.

Producing, Managing
& Sharing SBOMs �

Step 1.

Arrange the processes for

obtaining SBOMs

Step 2.

Organise the processing and

management of SBOMs

Step 3.

Organise the distribution of

SBOMs to third parties

Step 4.

Evaluate and improve

� Figure 3: Overview of the processes within the production,
management and sharing of SBOMs

Go to step 1

1 32

03.Producing, Managing
& Sharing SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

Step1.
Arrange the processes for obtaining SBOMs

Stap 1a. Reach agreements with SBOM suppliers

Entering into dialogue with (external) software suppliers about

also supplying SBOMs is an important step in working with

SBOM. Even if the deployment process for SBOMs has not yet

been fully arranged within your own organisation, it is still

meaningful to start these conversations. By initiating the

dialogue at this stage, it is possible to facilitate a phased

approach in which the agreements between the parties can

be further focused on the basis of experience acquired.

If the supplier offers cloud-based software or software as a

service (SaaS) this will also complicate supplying an SBOM. In that

case, the software is not operated on the customer infrastructure,

and because software versions for these products are generally

more often subject to changes, it may prove impractical to also

supply SBOMs. For that reason, the NTIA recommends that in the

near future suppliers must have internal SBOMs, and that they

must act on the SBOM information in a timely manner, but that

SBOMs for cloud-based software and SaaS applications need not

be shared [4]. As SBOMs become more developed, the

information from these SBOMs could also be included in the

customer risk-management strategy.

The SBOM standards and legislation and regulations currently

available offer a great deal of freedom regarding the information

that must be stored in an SBOM, and the processes surrounding

the exchange of SBOMs. It is therefore important to reach clear

agreements with suppliers. These agreements should at least

contain the following elements [4]:

• Format of the SBOMs

• Method of supply

• Methods for guaranteeing the authenticity of SBOMs, for

example via digital signatures

• Frequency of updates

• Fields/information to be completed

• Depth of the SBOM

(see also the detail block: Quality of SBOMs)

• How to deal with missing information

• What are the obligations upon the supplier with regard to

identified vulnerabilities

Producing, Managing &

Sharing SBOMs

Step 1.
Arrange the processes
for obtaining SBOMs

�

Step 2.

Organise the processing and

management of SBOMs

Step 3.

Organise the distribution of

SBOMs to third parties

Step 4.

Evaluate and improve

1 32

03.Producing, Managing
& Sharing SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

If the SBOM must be provided by an external supplier, it can be

useful to not reach these agreements on a one-to-one basis

because both for the supplier and the customers, this involves a

great deal of work. If customers with comparable information

needs join forces (for example in the form of an ISAC), a better

level of harmonisation could be achieved with the SBOM

suppliers and the suppliers themselves will be more easily able to

satisfy the specific needs of the consumer. In such discussions,

the advice is to not start from scratch but to keep pace with the

standards currently under development such as the ISO/IEC

27036: Cybersecurity – Supplier relationships.

Finally, it is expected that in the future legislation and regulations

will impose more specific requirements on the form and content of

SBOMs. The Cyber Resilience Act for example states that the Euro-

pean Commission can impose further requirements on SBOMs in

the form of implementing legislation (Article 10, section 15). It is

therefore important to keep monitoring these developments.

Step 1b: Organise the generation of SBOMs

Depending on how the processes within an organisation are

structured, SBOMs will be generated at different moments or by

different roles. The specific way in which the implementation

process will be carried out will therefore largely depend on the

organisation. In broad terms, the generation of an SBOM

involves four stages [6]:

• Identify the software components used

• Gather the necessary data about the software components

• Integrate the gathered information in the chosen SBOM

format

• Check the resultant SBOM

In practice, stages one to three are often viewed as a single large

stage. Ideally, these stages will be implemented as a fully

automated process, as an integral part of the software

development process. This will prevent human errors and

inconsistencies. Furthermore, the generation of SBOMs during

the development of software can itself contribute to the

development of better and more secure products, for example by

including information about preferred software components (for

more information see the chapter on SecDevOps in [2]).

Depending on the software building platform used, different

tools are available that are capable of automatically generating

an SBOM during the software building phase. No specific tools

are mentioned in this guide, but on the websites of SPDX and

Producing, Managing &

Sharing SBOMs

Step 1.
Arrange the processes
for obtaining SBOMs

�

Step 2.

Organise the processing and

management of SBOMs

Step 3.

Organise the distribution of

SBOMs to third parties

Step 4.

Evaluate and improve

https://www.iso.org/standard/82905.html
https://www.iso.org/standard/82905.html
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022PC0454
https://spdx.dev/resources/tools/

1 32

03.Producing, Managing
& Sharing SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

CycloneDX lists are kept of the tools that work with the standards

in question.

There are a number of aspects which must be taken into account

when selecting a suitable tool:

• How does the tool tie in with the current software

development process and the existing tool? Is there perhaps a

tool available which can be directly integrated in the current

development environment or test environment?

• On which types of file must be tool be usable; is the source

code always available or must the tool for example also work

on Docker images?

• How does the tool handle nested dependencies; what is the

maximum step depth the tool can reach? (See also the detail

block on the quality of SBOMs)

In certain cases, it is not possible to generate an SBOM during

the development of the software (for example for legacy

systems). In these cases, the SBOM can be produced post-build.

A post-build SBOM can be generated on the basis of SBOMs for

sub-components or on the basis of scans of the software using

code analysis tools. Additional manual work will often still have

to be carried out, for example to retrieve information from

licence agreements.

Two important points for attention when generating SBOMs

are the inclusion of runtime dependencies and container

information. Today, a lot of software is created with the

assistance of containers like Docker. To prevent the generation of

false negatives during the automated matching of information

with the components of an SBOM, the SBOM itself must also

contain information about these runtime dependencies and all

containers.

For stage 4, checking the generated SBOM, it is possible to check

whether the layout of the SBOM conforms with the requirements

from the standard. Tools are available for this purpose for the

various standards (see also the websites of SPDX and CycloneDX).

To verify the content of the SBOM (a task for the supplier or the

consumer), use can be made of frameworks that evaluate the

maturity of the SBOM generation process and are consequently

able to allocate a specific degree of reliability to the resultant

SBOM [6]. Two examples are: the OWASP Software Component

Verification Standard (SCVS) and ISO 5230.

Producing, Managing &

Sharing SBOMs

Step 1.
Arrange the processes
for obtaining SBOMs

�

Step 2.

Organise the processing and

management of SBOMs

Step 3.

Organise the distribution of

SBOMs to third parties

Step 4.

Evaluate and improve

Go to step 2

https://cyclonedx.org/tool-center/
https://spdx.dev/resources/tools/
https://cyclonedx.org/tool-center/
https://owasp-scvs.gitbook.io/scvs/
https://owasp-scvs.gitbook.io/scvs/
https://www.iso.org/standard/81039.html

1 32

03.Producing, Managing
& Sharing SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

CycloneDX lists are kept of the tools that work with the standards

in question.

There are a number of aspects which must be taken into account

when selecting a suitable tool:

• How does the tool tie in with the current software

development process and the existing tool? Is there perhaps a

tool available which can be directly integrated in the current

development environment or test environment?

• On which types of file must be tool be usable; is the source

code always available or must the tool for example also work

on Docker images?

• How does the tool handle nested dependencies; what is the

maximum step depth the tool can reach? (See also the detail

block on the quality of SBOMs)

In certain cases, it is not possible to generate an SBOM during

the development of the software (for example for legacy

systems). In these cases, the SBOM can be produced post-build.

A post-build SBOM can be generated on the basis of SBOMs for

sub-components or on the basis of scans of the software using

code analysis tools. Additional manual work will often still have

to be carried out, for example to retrieve information from

licence agreements.

Two important points for attention when generating SBOMs

are the inclusion of runtime dependencies and container

information. Today, much software is created with the assistance

of containers like Docker. To prevent the generation of false

negatives during the automated matching of information with

the components of an SBOM, the SBOM itself must also contain

information about these runtime dependencies and all

containers.

For stage 4, checking the generated SBOM, it is possible to check

whether the layout of the SBOM conforms with the requirements

from the standard. Tools are available for this purpose for the

various standards (see also the websites of SPDX and CycloneDX).

To verify the content of the SBOM (a task for the supplier or the

consumer), use can be made of frameworks that evaluate the

maturity of the SBOM generation process and are consequently

able to allocate a specific degree of reliability to the resultant

SBOM [6]. Two examples are: the OWASP Software Component

Verification Standard (SCVS) and ISO 5230.

Producing, Managing &

Sharing SBOMs

Step 1.
Arrange the processes
for obtaining SBOMs

�

Step 2.

Organise the processing and

management of SBOMs

Step 3.

Organise the distribution of

SBOMs to third parties

Step 4.

Evaluate and improve

Go to step 2

Detail block:
The quality of SBOMs

Because no consensus has yet been reached about exactly what

must be recorded in an SBOM, there is also no standardised

approach to evaluating the quality of an SBOM. Best practice is

to have SBOMs generated automatically during the building

process as much as possible. In this way, human errors (for

example in the processing of naming and updating) are avoided,

as much as possible. Due to the wide variety of tools and

configuration options, even in this situation, it is not self-evident

that an automatically generated SBOM will comply with

(implicitly) expected quality requirements. In addition to the

continuous ever present challenges relating to the unique

identification of components, there are two other important

points for attention in evaluating the quality of an SBOM:

• Depth

• Completeness

The depth of an SBOM refers to the number of stages in which

dependencies on dependencies (i.e. transitive dependencies) are

included. The minimum requirements presented by the

American government state that an SBOM must at least describe

the primary components with all direct dependencies [4],

in other words, 1 step. These components and dependencies

must be described in sufficient detail to be able to iteratively

identify the transitive dependencies. For many SBOM

applications, it is essential to establish the most complete

possible overview of the software supply chain such that the

number of steps should be as high as possible. A good example

of the importance of >1 step is described in [3] . At present, it

can prove difficult for software suppliers to create deep SBOMs,

due to existing requirements imposed by sub-component

suppliers. The expectation is that as more organisations start to

1 2

Close detail block

1 32

03.Producing, Managing
& Sharing SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

CycloneDX lists are kept of the tools that work with the standards

in question.

There are a number of aspects which must be taken into account

when selecting a suitable tool:

• How does the tool tie in with the current software

development process and the existing tool? Is there perhaps a

tool available which can be directly integrated in the current

development environment or test environment?

• On which types of file must be tool be usable; is the source

code always available or must the tool for example also work

on Docker images?

• How does the tool handle nested dependencies; what is the

maximum step depth the tool can reach? (See also the detail

block on the quality of SBOMs)

In certain cases, it is not possible to generate an SBOM during

the development of the software (for example for legacy

systems). In these cases, the SBOM can be produced post-build.

A post-build SBOM can be generated on the basis of SBOMs for

sub-components or on the basis of scans of the software using

code analysis tools. Additional manual work will often still have

to be carried out, for example to retrieve information from

licence agreements.

Two important points for attention when generating SBOMs

are the inclusion of runtime dependencies and container

information. Today, much software is created with the assistance

of containers like Docker. To prevent the generation of false

negatives during the automated matching of information with

the components of an SBOM, the SBOM itself must also contain

information about these runtime dependencies and all

containers.

For stage 4, checking the generated SBOM, it is possible to check

whether the layout of the SBOM conforms with the requirements

from the standard. Tools are available for this purpose for the

various standards (see also the websites of SPDX and CycloneDX).

To verify the content of the SBOM (a task for the supplier or the

consumer), use can be made of frameworks that evaluate the

maturity of the SBOM generation process and are consequently

able to allocate a specific degree of reliability to the resultant

SBOM [6]. Two examples are: the OWASP Software Component

Verification Standard (SCVS) and ISO 5230.

Producing, Managing &

Sharing SBOMs

Step 1.
Arrange the processes
for obtaining SBOMs

�

Step 2.

Organise the processing and

management of SBOMs

Step 3.

Organise the distribution of

SBOMs to third parties

Step 4.

Evaluate and improve

Go to step 2

work with SBOMs, it will become possible to add more detail.

At that point, the depth could also become a quality requirement

recorded in the agreements between the software supplier

and the consumer.

When analysing the completeness of an SBOM, it is particularly

important to be able to distinguish between components that

have no dependencies and components of which the dependen-

cies are unknown (i.e. known unknowns). Determining the

completeness of an SBOM is not a trivial task. To be able to

evaluate a generated SBOM, knowledge must be available about

the software for which the SBOM was generated. This may

sound paradoxical, but it does mean that SBOM suppliers must

have a thorough understanding of their configuration manage-

ment if they are to be able to validate an SBOM. For organisa-

tions that consume SBOMs, certainly in the early stages of using

SBOMs, this evaluation process will be even more difficult.

In other words, at present it is difficult to evaluate the quality of

SBOMs. It is therefore important both for SBOM suppliers and

SBOM consumers that a process is designed to make it possible

to identify non-conformities and shortcomings, and hence to

subsequently improve the quality of SBOMs. Certainly during the

early phases of use of SBOMs, this is expected to be a manual

and knowledge-intensive process.

1 2

Close detail block

1 2

03.Producing, Managing
& Sharing SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

Step 2:
Organise the processing and management of SBOMs
To be able to make use of SBOMs within an organisation, it is

important that the relevant information from all SBOMs is made

available in a uniform manner. Ideally, this information will be

read out and stored automatically in a central database. For an

ever growing number of applications, tools will become available

for reading SBOMs directly into a standard format (CyclonDX,

SPDX) However, this will not immediately be possible for all

SBOMs and additional processing stages will have to be

organised.

Two example are [7]:

• Due to the challenges relating to the unique identification of

components (see the detail block: Unique identification of

software) it can be necessary in certain cases to

determine the identity of components (entity resolution).

There are support tools for this purpose too but it can be a

complex process that also requires manual work.

• Depending on the depth of the SBOM, it may be necessary to

search for dependencies on dependencies (transitive

dependency resolution). The number of dependencies that have

to be worked through can grow rapidly, so the use of tools for

this task is recommended.

Producing, Managing &

Sharing SBOMs

Step 1.

Arrange the processes for

obtaining SBOMs

Step 2.
Organise the processing
and management
of SBOMs

�

Step 3.

Organise the distribution of

SBOMs to third parties

Step 4.

Evaluate and improve

1 2

03.Producing, Managing
& Sharing SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

Step 2:
Organise the processing and management of SBOMs
To be able to make use of SBOMs within the organisation, it is

important that the relevant information from all SBOMs be made

available in a uniform manner. Ideally, this information will be

read out and stored automatically in a central database. For an

ever growing number of applications, tools will become available

for reading SBOMs directly into a standard format (CyclonDX,

SPDX) However, this will not immediately be possible for all

SBOMs and additional processing stages will have to be

organised.

Two example are [7]:

• Due to the challenges relating to the unique identification of

components (see the detail block: Unique identification of

software) it can be necessary in certain cases to

determine the identity of components (entity resolution).

There are support tools for this purpose too but it can be a

complex process that also requires manual work.

• Depending on the depth of the SBOM, it may be necessary to

search for dependencies on dependencies (transitive

dependency resolution). The number of dependencies that have

to be worked through can grow rapidly, so the use of tools for

this task is recommended.

Producing, Managing &

Sharing SBOMs

Step 1.

Arrange the processes for

obtaining SBOMs

Step 2.
Organise the processing
and management
of SBOMs

�

Step 3.

Organise the distribution of

SBOMs to third parties

Step 4.

Evaluate and improve

Detail block:
Unique identification for software

To enable the effective use of SBOMs, it is essential that software

components are identified in the same way, everywhere. Only

then can a software component from an SBOM be automatically

linked to known vulnerabilities, licences and other relevant

information. If this does not happen, false positives or false

negatives can arise. In the case of a false positive, a match is made

between information that is not actually related. If this happens

when searching for vulnerabilities, a component can wrongly be

identified as vulnerable. In the case of a false negative, actually no

match is made where it should be. This means that a component

may appear to not be vulnerable, while in fact it is.

Unfortunately, at present, too many different ways of identifying

software components are in use. The most commonly used

methods are:

• Coordinates

• Package URL (PURL)

• Common Platform Enumeration (CPE)

• Software Identification (SWID) tagging

• Cryptographic hash functions (SHA-1, SHA-2, SHA-3,

BLAKE2b, BLAKE3)

The use of coordinates coordinates is described as: group, name

and version. An example is "group": "org.example", "name":

"sample-library", "version": "1.0.0.

PURL was the result of an initiative to introduce a standard

method of identifying software packages, independently of

the context of a specific package manager. It makes use of

a simple syntax in which a number of components are

combined to form a URL: scheme:type/namespace/name@

version?qualifiers#subpath. This results in identifiers such as:

pkg:maven/org.apache.xmlgraphics/batik-anim@1.9.1?packaging

=sources.

CPE is a commonly used standard, in particular in combination

with vulnerability and incident management. However, the

process surrounding the setting of a CPE is unfortunately

vulnerable to human error. In addition, the granularity of the CPE

approach is too limited in certain situations to determine

whether a software component actually contains a vulnerability.

For that reason, the SBOM Forum recommends switching to the

use of PURL [17].

1 2

Close detail block

https://github.com/package-url/purl-spec
https://nvd.nist.gov/products/cpe
https://www.iso.org/standard/65666.html

1 2

03.Producing, Managing
& Sharing SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

Step 2:
Organise the processing and management of SBOMs
To be able to make use of SBOMs within the organisation, it is

important that the relevant information from all SBOMs be made

available in a uniform manner. Ideally, this information will be

read out and stored automatically in a central database. For an

ever growing number of applications, tools will become available

for reading SBOMs directly into a standard format (CyclonDX,

SPDX) However, this will not immediately be possible for all

SBOMs and additional processing stages will have to be

organised.

Two example are [7]:

• Due to the challenges relating to the unique identification of

components (see the detail block: Unique identification of

software) it can be necessary in certain cases to

determine the identity of components (entity resolution).

There are support tools for this purpose too but it can be a

complex process that also requires manual work.

• Depending on the depth of the SBOM, it may be necessary to

search for dependencies on dependencies (transitive

dependency resolution). The number of dependencies that have

to be worked through can grow rapidly, so the use of tools for

this task is recommended.

Producing, Managing &

Sharing SBOMs

Step 1.

Arrange the processes for

obtaining SBOMs

Step 2.
Organise the processing
and management
of SBOMs

�

Step 3.

Organise the distribution of

SBOMs to third parties

Step 4.

Evaluate and improve

The Software Identification (SWID) Tag is an ISO-standaard

[16] which was already defined in 2012 as a means of

maintaining an overview of the software installed within an

organisation. In practice, in the context of SBOM, SWID Tags are

primarily used as a means of identifying software components

within the CyclonDX or SPDX format, which is explained in the

section on SBOM Standards.

The use of hashes is a well-known means of verifying that two

pieces of code are identical. In practice, this proves difficult to

use because different hash functions are used or because it is

unclear precisely which components of a package have been

included in the hash. For example, is or is not the SBOM itself

part of the hash if delivered as part of the package?

In addition to the use of different standards, the names used by

suppliers for software are also subject to changes, for example

as a result of mergers and acquisitions between the

organisations, or as a result of new project forks.

The conclusion is that there is still a long way to go before a

uniform global approach will be introduced for identifying

software components. Until that time, the NTIA recommends

applying the following principles [14]:

• If a uniform method already exists for identifying a

component, follow this method. Examples are names from

package managers that use unique identifiers or names from

suppliers that allocate clear identifiers to their software

• If no uniform method yet exists, choose an existing,

commonly used standard to describe a component.

1 2

Close detail block

https://www.iso.org/standard/65666.html

1 2

03.Producing, Managing
& Sharing SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

The management of SBOMs within an organisation involves two

aspects: on the one hand ensuring that SBOMs are up to date and

on the other managing the total collection of SBOMs. Both

aspects are briefly explained below.

Throughout their lifecycle, software applications often undergo

changes, such as bug fixes, security patches, new features, etc. [5].

Every time the software is altered, the software supplier must

also supply a new SBOM that includes the changes. In theory,

the software configuration carried out by the software customer

can also be added to the SBOM. In this way, it is possible to

distinguish between different configurations which may also

have different runtime dependencies. In practice, however, as yet

little is known about how this can be used. The advice is not to

set up a separate process for managing the SBOMs over time, but

to link this process to already existing processes for software

configuration management.

To manage the total overview of SBOMs, the same aspects are

relevant as those that apply to the management of other large

volumes of data: storage capacity, indexing, backup systems, etc.

A specific point for attention for SBOM storage is security. It is

after all essential that the organisation can trust the SBOMs,

and for that reason the risk of SBOM sabotage by malicious

parties must be minimised [8].

Producing, Managing &

Sharing SBOMs

Step 1.

Arrange the processes for

obtaining SBOMs

Step 2.
Organise the processing
and management
of SBOMs

�

Step 3.

Organise the distribution of

SBOMs to third parties

Step 4.

Evaluate and improve

Go to step 3

03.Producing, Managing
& Sharing SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

Step 3:
Organise the distribution of SBOMs to third parties
SBOMs can be distributed to other organisations in a number of

different ways. A number of examples [9]:

• The SBOM is downloaded via the website/API of the supplier.

The address appears in a pre-agreed location in the software.

• The SBOM is sent by email or other communication channel.

• The SBOM is supplied as part of the software package or the

embedded system.

When making choices about the structure of the distribution

process, the following factors must be taken into account:

• Offline availability: for embedded systems, among others, it

can be important to have an option for inspecting the SBOM

on the system, at all times, even without online integration. In

this situation, the SBOM must be an integral part of the

software package.

• Possibility of automation: a major benefit of SBOM is the

possibility of automation of a number of processes. To be able

to benefit from this advantage, the distribution/reception of

SBOMs will also have to be automated. This argues in favour

of solutions such as APIs, rather than email or other

information communication channels..

• Scalability: this point is an extension of the previous two

points. The expectations is that the number of SBOMs

managed by an organisation will quickly grow considerably,

for example because of different customers, different

versions, etc. This could be a reason to consider setting up an

API with push/subscribe options, in which SBOMs are

automatically shared.

At present, there are still few best practices relating to the

sharing of SBOMs. The CISA has organised an SBOM Workstream

relating to SBOM ‘Sharing & Exchanging’ in which they are

working to develop recommendations, together with the

community.

Producing, Managing &

Sharing SBOMs

Step 1.

Arrange the processes for

obtaining SBOMs

Step 2.

Organise the processing and

management of SBOMs

Step 3.
Organise the
distribution of SBOMs

to third parties
�

Step 4.

Evaluate and make adjustments

Go to step 4

https://www.cisa.gov/sbom

03.Producing, Managing
& Sharing SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

Step 4:
Evaluate and improve
The use of the SBOM and the accompanying tooling is still a

relatively new phenomenon, and will undergo numerous

developments over the coming period. It is therefore advisable

to follow a phased approach starting with the low-hanging fruit

and which leaves space for incorporating new best practices or

tooling. To make this possible, a continuous improvement

approach could be used such as the Plan-Do-Check-Act cycle.

In this process, it is important to identify concrete/measurable

targets in the plan phase, and to reach clear agreements for the

do phase. The advice is to start small and to gradually discover

which processes operate smoothly and where further

information or connections are missing. In the check phase, also

involve the relevant parties from outside your own organisation,

such as software suppliers and peer organisations. This makes it

possible to reach joint decisions on alternative approaches where

necessary, and the relevant processes and toolchains will be

established in an iterative process.

Producing, Managing &

Sharing SBOMs

Step 1.

Arrange the processes for

obtaining SBOMs

Step 2.

Organise the processing and

management of SBOMs

Step 3.

Organise the distribution of

SBOMs to third parties

Step 4.
Evaluate and improve �

Deploying SBOMs for Vulnerability Management

https://www.sixsigma.nl/artikelen/wat-is-de-pdca-cyclus

04.Deploying SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

Deploying SBOMs for Vulnerability Management
This chapter describes how SBOMs can be deployed to reinforce

the vulnerability management process. To make optimum use of

the benefits of SBOM, it is heavily recommended to also

immediately integrate the use of the Vulnerability Exploitability

eXchange (VEX) security advisory. For that reason, this chapter

also describes how the combination of SBOM and VEX can be

employed to ensure a more effective vulnerability management

process.

In this guide, vulnerability management is defined as a

continuous, proactive and risk-driven process used by

organisations to secure their systems against cyber threats. In

this process, potential vulnerabilities are identified and

interpreted, at which point prioritised vulnerabilities are tackled

on the basis of a risk assessment. Because it is a continuous

process, it is often also referred to as the vulnerability

management cycle. The precise way in which this cycle is

structured will differ from organisation to organisation, but in

broad terms, three steps can be identified [10]:

• Know which assets the organisation owns and when

vulnerabilities in respect of those assets are discovered.

• Create an insight into the impact of vulnerabilities and which

mitigating measures need to be implemented.

• Implement the chosen mitigating measures.

The idea behind using SBOM for vulnerability management

is that SBOMs can accelerate the process of searching for

vulnerable software components and their dependencies.

This is because SBOMs provide an overview of which

software components are used and where they are located. As a

consequence, security specialists can use their already scarce

time to focus on prioritising and mitigating the vulnerabilities.

One point that does deserve attention in this connection is that a

better total overview of all software components combined with

an ever growing number of known vulnerabilities will result in

the identification of more and more potential vulnerabilities in

step 1 of the vulnerability management cycle. The ability to

rapidly estimate which vulnerabilities deserve further

investigation will itself become increasingly important as a

consequence. VEX is expected to play an important role in this

process. The following sections first provide an explanation of

what VEX is, before considering how SBOM and VEX can be used

together in the vulnerability management process.

Deploying SBOMs
for Vulnerability
Management

�

What is VEX?

Integrating SBOM and VEX

What is VEX?

04.Deploying SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

What is VEX?
VEX is a type of security advisory according to which software

suppliers can indicate the actual impact they expect a specific

vulnerability to have on a product [11]. A VEX document is

machine-readable and contains at least the following

information [12]:

• The metadata, to identify the document and the author.

• The product details, such as the identifier and the software

version number.

• Details about the vulnerability, including an identifier and an

explanation.

• The VEX status for the product.

The VEX status is the field which indicates whether the

software is vulnerable. The supplier can choose from the

following options [12]:

• not affected,

• affected,

• fixed, or

• under investigation.

The next section describes how to deal with the various options.

As well as warning consumers about serious vulnerabilities, VEX

statuses can in fact also be used to reassure consumers that

certain vulnerabilities do not apply to them. Sometimes a

software application does contain a vulnerability component but

nevertheless does not represent a risk because the vulnerability

is compensated for in some other way or because the affected

piece of code is not called up. A supplier is able to make this

analysis and subsequently inform its entire customer base.

Deploying SBOMs for

Vulnerability Management

What is VEX? �

Integrating SBOM and VEX

Integrating SBOM and VEX

https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf

1 32

04.Deploying SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

Integrating SBOM and VEX in the Vulnerability
Management Cycle
Having explained all the building blocks, this section describes

how SBOM and VEX can be combined in the vulnerability

management process. The description refers back to the steps of

the vulnerability management cycle described above.

Step 1: Know which assets the organisation owns and when

vulnerabilities against those assets are discovered.

By setting up the production and management of SBOMs as

described in the previous chapter, the organisation has access to a

continuous, up-to-date overview of the software components

used. As soon as a new vulnerability is made known, it can be

entered into a vulnerability management tool at which point the

tool automatically indicates which software packages contain the

vulnerable component. Depending on the tooling chosen,

different options will be made available for linking vulnerabilities

to software components from an SBOM. A number of options:

• The tool has a direct link to a vulnerability database such as

the NIST National Vulnerability Database or MITREs Common

Vulnerabilities and Exposures database. As soon as a new

vulnerability is added, the tool scans the SBOM database to

determine which components are vulnerable.

• The organisation receives information about a new vulnera-

bility via a non machine-readable format such as an email,

website or telephone call. A security analyst then manually

enters this information in the tool, at which point the tool

scans the SBOM database for vulnerable components.

• The organisation receives information about a new

vulnerability via a machine-readable format such as a VEX

document. These documents can be directly entered by the

tool. Work is currently underway on a standard that makes

this possible: the Common Security Advisory Framework

(CSAF). For more information see the detail block

In particular at this stage, the SBOM will save a great deal of time.

As soon as the information about a vulnerability has been loaded

into the vulnerability management tool, the security analyst will

be able to see within just a few seconds in which application

within the organisation the vulnerability is present.

Remember that there will always be software components within

an organisation that are not or not fully covered by an SBOM

Deploying SBOMs for

Vulnerability Management

What is VEX?

Integrating
SBOM and VEX �

https://nvd.nist.gov/
https://www.cve.org/
https://www.cve.org/

1 32

04.Deploying SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

Integrating SBOM and VEX in the Vulnerability
Management Cycle
Having explained all the building blocks, this section describes

how SBOM and VEX can be combined in the vulnerability

management process. The description refers back to the steps of

the vulnerability management cycle described above.

Step 1: Know which assets the organisation owns and when

vulnerabilities against those assets are discovered.

By setting up the production and management of SBOMs as

described in the previous chapter, the organisation has access to a

continuous, up-to-date overview of the software components

used. As soon as a new vulnerability is made known, it can be

entered into a vulnerability management tool at which point the

tool automatically indicates which software packages contain the

vulnerable component. Depending on the tooling chosen,

different options will be made available for linking vulnerabilities

to software components from an SBOM. A number of options:

• The tool has a direct link to a vulnerability database such as

the NIST National Vulnerability Database or MITREs Common

Vulnerabilities and Exposures database. As soon as a new

vulnerability is added, the tool scans the SBOM database to

determine which components are vulnerable.

• The organisation receives information about a new vulnera-

bility via a non machine-readable format such as an email,

website or telephone call. A security analyst then manually

enters this information in the tool, at which point the tool

scans the SBOM database for vulnerable components.

• The organisation receives information about a new

vulnerability via a machine-readable format such as a VEX

document. These documents can be directly entered by the

tool. Work is currently underway on a standard that makes

this possible: the Common Security Advisory Framework

(CSAF). For more information see the detail block

In particular at this stage, the SBOM will save a great deal of time.

As soon as the information about a vulnerability has been loaded

into the vulnerability management tool, the security analyst will

be able to see within just a few seconds in which application

within the organisation the vulnerability is present.

Remember that there will always be software components within

an organisation that are not or not fully covered by an SBOM

Deploying SBOMs for

Vulnerability Management

What is VEX?

Integrating
SBOM and VEX �

Detail block:
CSAF

At present, information about vulnerabilities is shared in many different ways. For example via mailing lists or blogpost, or in

urgent cases via a telephone call from a supplier or the NCSC. The Common Security Advisory Framework (CSAF) has been

developed to standardise the form of security advisories and to make them machine-readable. This makes it possible to distribute

information about new vulnerabilities more rapidly, and to process that information automatically [20]. CSAF is managed by the

standardisation group OASIS Open and is actively promoted by NTIA (US) and BSI (DE). CSAF is the replacement for the Common

Vulnerability Reporting Framework (CVRF). It supports a number of different profiles for various types of advisories. One of the

profiles supported by CSAF is VEX. The CSAF website offers several videos explaining the concepts behind CSAF, as well as the

combination of CSAF and SBOM.

https://oasis-open.github.io/csaf-documentation/

1 32

04.Deploying SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

(open-source software without SBOM, for example). For soft-

ware components, this means that a risk assessment must be

carried out in advance of the extent to which they are sufficiently

covered by SBOM data. It is also important at that moment to

determine how to deal with critical vulnerabilities that could

apply to the component (can the application in which the

component is used be temporarily shut down, while determining

whether the component is vulnerable).

Step 2: Create an insight into the impact of vulnerabilities and

which mitigating measures need to be implemented.

At this stage, the added value of VEX becomes clear. After step 1

has been implemented, the analyst will be faced with a list of a

possibly large number of potentially vulnerable applications. That

is why it is so important to reach clear agreements in advance with

software suppliers about the supply of VEX documents. Ideally, in

the event of serious vulnerabilities, the supplier will automatically

send a VEX document to its customers. According to alternative

agreements, the organisation can ask the supplier for a VEX status

relating to a specific vulnerability. As soon as the VEX is received,

it can be automatically read by the vulnerability management.

The status allocated in the document determines the next step:

• Not affected: the vulnerability has no impact on the product

and no further action is required.

• Fixed: this status is often issued in combination with an

affected status. It can for example mean that the current

product version is not influenced but previous versions are. In

principle, this status means that no action is currently

required. However, if the previous (vulnerable) version was

also used by the organisation, and the vulnerability relates to

a critical system, it may still be essential to carry out a more

in-depth investigation to be certain that malicious parties

have not already made use of the vulnerability while the old

version was still in use.

• Under investigation: this status is issued until the supplier

has sufficient information to update the status. The agree-

ments with the supplier must also include an agreement on

how to deal with this status. It is recommended that you

agree that the customer will not seek to contact the supplier,

to allow the supplier to carry out the investigation, rather

than having to respond to concerned customers.

• Affected: the product is vulnerable to the new threat. In these

cases, the supplier must specify which steps the customer

needs to take in order to minimise the risk of the vulnerability,

Deploying SBOMs for

Vulnerability Management

What is VEX?

Integrating
SBOM and VEX �

1 32

04.Deploying SBOMs

Starter guide Software Bill of Materials (SBOM) | What, why and how?

for example updating the product to a safe version. The

customer must then implement the mitigating measures via

its own vulnerability management process (this then is step 3).

If no VEX status is supplied, it will be up to the analyst to carry

out the risk assessment to determine whether a software

package with a vulnerable component is actually vulnerable.

As soon as it becomes clear whether a software product is or has

been vulnerable, the security analyst must determine the actual

impact of a vulnerable software product for the organisation,

which mitigating measures are possible for the organisation,

and their potential impact on the organisation. The way in which

these considerations should be made is the same as how this

process should be carried out without SBOM and VEX, and as

such is beyond the scope of this guide. Specifically for

vulnerabilities in commonly used components (such as with the

Log4J incident), SBOM is able to offer a greater insight into the

total picture of the full range of software products that are

influenced, thereby making it possible to arrive at a more

balanced consideration of the total package of mitigating

measures and their impact.

Step 3: Implement the chosen mitigating measures.

In this step, the chosen mitigating measures are actually

implemented. This often involves a preparation and a test phase,

as well as a rollout phase, after which a check must be carried out

to determine whether the measures have indeed had the desired

effect. The actual implementation of this step is not directly

influenced by the use of SBOM and VEX.

If the underlying processes and tooling are well matched, the

combined deployment of VEX and SBOM can help automate a

time-consuming element of the vulnerability management

process. This matching or harmonisation process is no trivial task

and many aspects relating to interoperability and standardisa-

tion still need to be further elaborated. A determination will have

to be made for each individual organisation about how the

processes are set up and which combination of support tools

best suits them. Nevertheless, all relevant parties strongly

recommend making a start on the use of SBOM for vulnerability

management. This tool requires a phased approach, with space

for evaluation and adjustments.

Deploying SBOMs for

Vulnerability Management

What is VEX?

Integrating
SBOM and VEX �

Afterword

References

Afterword

Starter guide Software Bill of Materials (SBOM) | What, why and how?

SBOM is an important building block in enhancing the transparency of the software

supply chain and reinforcing security. The expectation is that in the future, software

will always have to be supplied with an SBOM. At present there is still much

discussion about what SBOMs and the related processes should look like.

This offers room for experimentation and learning. The final recommendation at

the end of this guide is therefore to keep a close eye on the initiatives that could be

relevant to your organisation. A number of initiatives currently underway are:

• The approval and introduction of the EU Cyber Resilience Act; an update is

expected in June 2023 [13]

• CISA SBOM Workstreams: The American Cybersecurity & Infrastructure Security

Agency (the American NCSC) has established four working groups to consider

the various aspects of SBOM:

 - The Cloud & Online Applications working group will regulate the use of SBOMs

in cloud and SaaS applications.

 - The On-ramps & Adoption working group is attempting to broaden awareness

of SBOM, as a means of helping organisations that still have little knowledge

of this subject to get on track.

 - The Sharing & Exchanging working group is investigating how to deal with the

complex issue of the requirements that must be satisfied to make it possible to

share SBOMs between organisations.

 - The Tooling & Implementation working group is concentrating on the

possibilities and challenges of automating SBOM processes using tooling.

• ISO/IEC 27036-3 - Guidelines for information and communication technology

supply chain security: This ISO standard is currently being developed. Part 3

above all focuses on guidelines for hardware, software and supply chain

security.

• Dependency track: Dependency track is a tool capable of producing and

analysing SBOMs. The tool was developed as an open-source project by the

OWASP community and is open to active further development by participants in

that community.

• Global Platform SBOM Task Force: Global Platform develops and publishes

standards for secure chip technology. They have launched a working group to

analyse the influence of SBOMs in the secure chip world. This working group

could be of real interest to secure chip suppliers because secure chips are used in

a so many different sectors (for example the car industry, financial sector, energy

sector, etc.).

Many of these initiatives are taking place at international and cross-sectoral level.

It could therefore also be valuable to organise similar discussions with peer

organisations within your own sector, in order to consider more sector-specific

aspects.

https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://www.cisa.gov/sbom
https://www.iso.org/standard/82890.html
https://dependencytrack.org/
https://globalplatform.org/task-forces/sbom-task-force/

1 2

References

Starter guide Software Bill of Materials (SBOM) | What, why and how?

1. Cyber Safety Review Board. Review of the December 2021 Log4j Event. CISA.

[Online] 11 July 2022.

2. Riel, Bart van, Kuijpers, Sanne en Koning, Roeland de. Using the Software Bill

of Materials for Enhancing Cybersecurity. sl : Capgemini Invent, 2021.

3. NTIA Multistakeholder Process on Software Component Transparency

Use Cases and State of Practice Working Group. Roles and Benefits for

SBOM Across the Supply Chain. NTIA. [Online] 8 November 2019. [Quote dated:

12 February 2023.]

4. The United States Department of Commerce. The Minimum Elements For a

Software Bill of Materials (SBOM). The National Telecommunications and

Information Administration. [Online] 12 july 2021.

5. NTIA. Survey of Existing SBOM Formats and Standards. NTIA. [Online] 2021.

[Quote dated: 20 January 2023.]

6. NTIA Formats and Tooling Working Group. Software Suppliers Playbook:

SBOM Production and Provision. NTIA. [Online] 17 November 2021. [Quote

dated: 13 February 2023.]

7. NTIA Formats and Tooling Working Group. Software Consumers Playbook:

SBOM Acquisition, Management, and Use. NTIA. [Online] 17 November 2021.

[Quote dated: 13 February 2023.]

8. Muro, Iradier Alvaro. SBOMs 101: What You Need to Know. DevOps.

[Online] 19 July 2022. [Quote dated: 14 March 2023.]

9. NTIA. Sharing and Exchanging SBOMs. NTIA. [Online] 10 February 2021.

10. Souppaya, Murugiah en Scarfone, Karen. Guide to Enterprise Patch

Management Planning: Preventive Maintenance for Technology. NIST.

[Online] April 2022. [Quote dated: 8 March 2023.]

11. NTIA. Vulnerability-Exploitability eXchange (VEX) – An Overview. NTIA. [Online]

27 September 2021.

12. VEX Working Group. Vulnerability Exploitability eXchange (VEX) - Use Cases.

CISA. [Online] April 2022. [Quote dated: 6 March 2023.]

13. Car, Polona. Horizontal cybersecurity requirements for products with digital

elements. Legislative Train Schedule. [Online] European Parliament, 20 May 2023.

[Quote dated: 4 June 2023.]

https://www.cisa.gov/sites/default/files/publications/CSRB-Report-on-Log4-July-11-2022_508.pdf
https://ntia.gov/sites/default/files/publications/ntia_sbom_use_cases_roles_benefits-nov2019_0.pdf
https://ntia.gov/sites/default/files/publications/ntia_sbom_use_cases_roles_benefits-nov2019_0.pdf
https://www.ntia.gov/sites/default/files/publications/sbom_minimum_elements_report_0.pdf
https://www.ntia.gov/sites/default/files/publications/sbom_minimum_elements_report_0.pdf
https://ntia.gov/sites/default/files/publications/sbom_formats_survey-version-2021_0.pdf
https://ntia.gov/sites/default/files/publications/software_suppliers_sbom_production_and_provision_-_final_0.pdf
https://ntia.gov/sites/default/files/publications/software_suppliers_sbom_production_and_provision_-_final_0.pdf
https://ntia.gov/sites/default/files/publications/software_consumers_sbom_acquisition_management_and_use_-_final_0.pdf
https://ntia.gov/sites/default/files/publications/software_consumers_sbom_acquisition_management_and_use_-_final_0.pdf
https://devops.com/sboms-101-what-you-need-to-know/
https://www.ntia.gov/files/ntia/publications/ntia_sbom_sharing_exchanging_sboms-10feb2021.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-40r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-40r4.pdf
https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
https://www.cisa.gov/sites/default/files/publications/VEX_Use_Cases_Aprill2022.pdf
https://www.europarl.europa.eu/legislative-train/theme-a-europe-fit-for-the-digital-age/file-european-cyber-resilience-act
https://www.europarl.europa.eu/legislative-train/theme-a-europe-fit-for-the-digital-age/file-european-cyber-resilience-act

1 2 Publication details

References

Starter guide Software Bill of Materials (SBOM) | What, why and how?

14. NTIA Multistakeholder Process on Software Component Transparency

Framing Working Group. Software Identification Challenges and Guidance.

NTIA. [Online] 30 March 2021. [Quote dated: 12 February 2023.]

15. Synopsys. What is the impact of the New EU Cyber Resilience Act on the

Software Supply Chain SBOM? [Webinar] sl : AppSecNL & Synopsys,

24 November 2022.

16. International Organization for Standardization. ISO/IEC 19770-2:2015. ISO.

[Online] March 2017. [Quote dated: 12 February 2023.]

17. The SBOM Forum. OWASP. A Proposal to Operationalize Component

Identification for Vulnerability Management. [Online] 13 September 2022.

[Quote dated: 12 February 2023.]

18. Europese Commissie. Regulation of the European Parliament and of the

Council on Horizontal Cybersecurity requirements for products with digital

elements and amending Regulation (EU) 2019/1020. European Commission.

[Online] 15 September 2022. [Quote dated: 4 June 2023.]

19. Biden jr., Joseph. Executive Order on Improving the Nation’s Cybersecurity.

The White House. [Online] 12 May 2021.

20. Friedman, Allan en Schmidt, Thomas. Your Software IS/NOT Vulnerable:

CSAF, VEX and the Future of Advisories. YouTube. [Online] 6 December 2021.

https://ntia.gov/sites/default/files/publications/ntia_sbom_software_identity-2021mar30_0.pdf
https://www.iso.org/standard/65666.html
https://owasp.org/assets/files/posts/A%20Proposal%20to%20Operationalize%20Component%20Identification%20for%20Vulnerability%20Management.pdf
https://owasp.org/assets/files/posts/A%20Proposal%20to%20Operationalize%20Component%20Identification%20for%20Vulnerability%20Management.pdf
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.youtube.com/watch?v=P5x6ht5zQqA
https://www.youtube.com/watch?v=P5x6ht5zQqA

Starter guide

Publication details

Software Bill of Materials (SBOM) | What, why and how?

This guide was compiled as part of the multiyear collaboration agreement between

the NCSC and TNO on reinforcing supply chain management.

Auteurs:
Gwen Jansen-Ferdinandus

Niels Brink

Silke Mergler

Andre Smulders

Peter-Paul Meiler

The authors would like to express their gratitude to the

following experts and organisations for their contribution

and feedback during the creation of this guide: Bart de Wijs

from ABB, Allan Friedman from CISA, Philips, RDI, Siemens

and UWV (Employee Insurance Agency).

© 2023 TNO

All rights reserved

No part of this publication may be reproduced and/or published by print, photocopy,
microfilm or any other means without the prior written consent of TNO.

	Kader sluiten 53:
	Terug naar waar vandaan 53:
	Kader sluiten 58:
	Terug naar waar vandaan 58:
	Button 4:
	Button 2:

