
IT Security Guidelines for
Transport Layer Security (TLS)

National Cyber Security Centre
The National Cyber Security Centre (NCSC), in collaboration with
the business community, government bodies and academics, is
working to increase the ability of Dutch society to defend itself in
the digital domain.

The NCSC supports the central government and organisations in
the critical infrastructure sectors by providing them with expertise
and advice, incident response and with actions to strengthen crisis
management. In addition, the NCSC provides information and
advice to citizens, the government and the business community
relating to awareness and prevention. The NCSC thus constitutes
the central reporting and information point for IT threats and
security incidents.

These IT Security Guidelines for Transport Layer Security were first
published by the NCSC in 2014. This update (v2.1) was published in
2021. See the appendix Changes to these guidelines for more details.

This publication was produced in collaboration with the following
partners:
	- �the national communication security agency (NBV), part of the

general intelligence and security service (AIVD)

The following organizations and individuals have provided
valuable contributions:
	- Autoriteit Persoonsgegevens
	- Belastingdienst
	- Centric
	- Dienst Publiek en Communicatie
	- Forum Standaardisatie
	- IBD
	- KPN
	- NLnet Labs
	- Northwave
	- Platform Internetstandaarden
	- RDW
	- SURFnet
	- de Volksbank
	- Z-CERT

	- Daniel Kahn Gillmor, ACLU
	- Tanja Lange, Eindhoven University of Technology
	- Kenny Paterson, ETH Zurich
	- Rich Salz, Akamai Technologies
	- Nick Sullivan, Cloudflare

IT Security Guidelines for
Transport Layer Security (TLS)

4 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Contents

Introduction� 5
Purpose� 5
Use for procurement� 5
Level of security� 5
Key message� 6
Outline� 6
References� 6

1	 What is Transport Layer Security?� 7
How TLS works� 7
Software libraries� 8
The importance of random numbers� 8

2	 Usage guidance� 9
Scenario 1: Control over both client and server� 9
Scenario 2: Only control over the server� 10
Points of particular interest� 11
Diverging from these usage guidelines� 11

3	 Guidelines� 12
Versions� 12
Algorithm selections� 12
Certificates� 13
Key exchange� 13
Elliptic curves� 13
Finite fields� 14
Other options� 14

Compression� 14
Renegotiation� 14
0-RTT� 14

Scheduling removal of Phase out configurations� 14

4	 Versions, algorithms and options� 15
Versions� 15
Cryptographic algorithms� 15

Algorithms for certificate verification� 16
Algorithms for key exchange� 16
Algorithms for bulk encryption� 17

Key sizes and choice of groups� 18
RSA key size� 18
Supported elliptic curves� 18
Supported finite field groups� 18

Options� 19
Compression� 19
Renegotiation� 19
0-RTT� 20
OCSP stapling� 20

Appendix A –Further considerations� 21
Forward secrecy� 21
Session tickets� 21
Random number generators� 21
Certificate management� 22
Where does a TLS connection terminate?� 22
Post-quantum security� 23
Authenticating clients with certificates� 23
Certificate pinning and DANE� 23

Appendix B – Changes to these guidelines� 24
Validity� 24
Critical changes� 24
New versions� 24

Appendix C – List of cipher suites� 25

Appendix D – Glossary� 26

References� 29

5 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Introduction

These guidelines are intended as advice during procurement,
set-up or review of configurations of the Transport Layer Security
protocol (TLS) on servers. TLS is the most popular protocol to
secure connections on the Internet.

Purpose

These guidelines do not contain step-by-step instructions for the
configuration of TLS.1 Nevertheless, they are technical in nature.
This publication helps an organisation choose between all possible
configurations of TLS to arrive at a secure configuration. An
administrator or supplier then applies this configuration.

Use for procurement

Organisations that procure IT systems can refer to this publication
when stating their requirements. A supplier is thus asked to supply
and maintain a secure TLS configuration by conforming to the
guidelines in this publication.

Level of security

Deciding on the right TLS configuration is ultimately each
organisation’s prerogative. It is a complex job. Each option requires
a choice between the available alternatives, where often many
exist. Security plays a role here, but so does compatibility with
software of customers or end users. The guidelines in this
publication help navigate this effort.

1	 The book ‘Bulletproof SSL and TLS’ by Ivan Ristic (ISBN 978-
1907117046) offers step-by-step instructions on the configuration of various
software for the secure use of TLS, in addition to extensive background
information. Mozilla offers configuration examples for popular web server
software on its wiki https://wiki.mozilla.org/Security/Server_Side_TLS. The
website https://bettercrypto.org/ also offers step-by-step instructions. Note
that these resources may not yet be up to date with the introduction of TLS
1.3 and that the advice in these publications differs slightly from the advice in
this document.

To aid in the choice of a configuration, the settings for the options
available in TLS are divided in four security levels.
	- A setting that is Insufficient should not be chosen. TLS

configurations that contain these settings are not secure.
	- A Phase out setting is known to be fragile with respect to

evolving attack techniques and merely provides a slim security
margin. This places them at risk of becoming Insufficient in the
near future. For some applications, Phase out settings are (still)
needed to support very old clients. The use of these settings
should be subject to written deprecation conditions that
schedule their removal.

	- If a setting is Sufficient, it ‘does the job’ for the time being. It is
possible to use such a setting in a secure TLS configuration.
Many Sufficient settings are required for compatibility with
older client systems.

	- The most secure and future-proof settings are Good. If you have
the freedom to choose which settings you support, then only
use Good settings.

New or improved attack techniques periodically appear for TLS.
These attack techniques usually concern Phase out or Sufficient
settings. A setting rendered insecure by an attack technique will
lose its status as Phase out, Sufficient or Good. If that happens an
addendum to these guidelines will be published. For further
details, see the appendix Changes to the guidelines.

Good settings are likely to be more future-proof than Sufficient
settings. Even so, there are no guarantees. Moreover, no single TLS
configuration remains secure forever. Even TLS configurations
consisting only of Good settings will need updates at some point.
This is the case when Good settings become Insufficient.
The words ‘insufficient’, ‘phase out’, ‘sufficient’ and ‘good’ have a
meaning in regular use. To distinguish these uses, they are
displayed in a different font throughout this publication when
referring to a security level.

https://wiki.mozilla.org/Security/Server_Side_TLS
https://bettercrypto.org/

6 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Key message

The secure configuration of TLS is important to secure network
connections. TLS has secure and less secure settings. Legacy
software does not always support the most secure settings. Use
Good settings when possible and complement these with
Sufficient settings to support legacy software. Do you need to
support a lot of legacy software? Then use a broad palette of
Sufficient settings and complement it with Good settings where
possible. Use Phase out settings only whilst you have a further
need for client compatibility and set clear criteria for their
deprecation. Do not use Insufficient settings.

Outline

The core of these guidelines consists of the chapters Usage guidance,
Guidelines and Versions, algorithms and options. The chapter Usage
guidance is aimed at people that need to create their own secure TLS
configuration. It offers guidance to arrive at a secure configura-
tion. The chapter Guidelines is meant for people who judge TLS
configurations, such as auditors. This may include configurations
on paper or in practice. The chapter Versions, algorithms and options
lists relevant TLS options. It describes secure settings for every
option listed. Other chapters regularly refer to the chapter Versions,
algorithms and options for details.

These guidelines can be read in three ways:
	- If you are designing a TLS configuration yourself, then read the

chapter What is Transport Layer Security?, followed by the chapter
Usage guidance. The chapter Usage guidance will refer you to the
relevant parts of the chapter Versions, algorithms and options.

	- Do you want to know how certain settings for TLS options
influence its security? Then refer to the chapter Versions,
algorithms and options.

	- Are you assessing a TLS configuration? Then read the chapter
What is Transport Layer Security?, followed by the chapter Guidelines.
The chapter Guidelines will refer you to the relevant parts of the
chapter Versions, algorithms and options.

References

This publication makes use of multiple styles of references:
	- Guidelines are numbered, say B2-1, and are found in the chapter

Guidelines.
	- Technical terms are not always introduced upon first use. If a

term is marked in this way, then it can be found in the Glossary at
the back.

	- To supply background information, footnotes2 are used.
	- The support for the advice provided is based on the References

that can be found in the back. If a particular reference supports
an advice, it is shown in the following manner: (1)

2	 In this manner.

7 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

1	 What is Transport Layer
Security?

Transport Layer Security (TLS) is a protocol for the establishment
and use of a cryptographically secured connection between two
computer systems, a client and a server. After establishing a secure
connection with the TLS protocol, applications can use the
connection to exchange data between the client and the server.
TLS is applied in a large number of contexts. Well known examples
include web traffic (https), e-mail traffic (IMAP and SMTP after
STARTTLS) and certain types of virtual private networks (VPN).

Why TLS?

TLS protects the communication between client and server.
The protection of communication is important when sensitive
information is sent over a connection. Information can be
sensitive due to confidentiality (say login credentials) and due to
integrity (say a financial transaction).
In some cases, the use of encrypted connections is obligatory.
This obligation can flow from an organization’s policy, but also
from law or regulation:
•	 The Dutch Standards Forum’s “comply or explain” regime

requires use of TLS for communication between parts of the
Dutch government, such as the secure exchange of e-mail.3 Use
of HTTPS will become mandatory for all government websites.4

•	 The PCI Data Security Standard (PCI DSS) is a payment industry
policy that requires the use of encrypted transmission of
cardholder data over open, public networks.5

•	 The Dutch Data Protection Authority (Autoriteit Persoons
gegevens) requires the use of HTTPS on websites that collect
personal data.6 This requirement flows from the General Data
Protection Regulation.

3 	 (Dutch) https://www.forumstandaardisatie.nl/standaard/tls.

4 	 (Dutch) https://www.rijksoverheid.nl/ministeries/
ministerie-van-binnenlandse-zaken-en-koninkrijksrelaties/
documenten/kamerstukken/2018/10/16/
kamerbrief-over-verhogen-informatieveiligheid-bij-de-overheid

5 	 PCI-DSS v3.2.1, Req. 4, see https://www.pcisecuritystandards.org

6 	 (Dutch) https://autoriteitpersoonsgegevens.nl/nl/onderwerpen/
beveiliging/beveiliging-van-persoonsgegevens#moet-ik-altijd-https-
gebruiken-voor-mijn-website-6069

In every example, use of TLS ensures that the data sent cannot be
seen or modified by others in transit. Because sensitivity is
user-dependent, encrypted communication (and TLS) have
become the norm, rather than the exception in many contexts.

TLS only protects the contents of the communication. Information
about the data transport is not protected. In this aspect, TLS differs
from IPsec. TLS works on the transport layer. IPsec works on the
internet layer.7

There are currently seven different versions of TLS. Three carry its
old name: Secure Sockets Layer (SSL) 1.0, 2.0 and 3.0. These were
developed by Netscape. Then came TLS 1.0, 1.1, 1.2 and 1.3. These
were standardized by the Internet Engineering Task Force (IETF).
The IETF maintains TLS as an open standard. The most recent
version of TLS is 1.3.8

A client or server can support multiple versions of TLS.
The individual versions are not compatible. Every version has its
own options, for example in bulk encryption, authentication and
key exchange.

How TLS works

A connection between a client and server secured by TLS is called a
TLS session. A TLS session consists of two phases: the handshake
phase and the application phase. During the handshake, the client
and server agree on the way the TLS session is established. The
following are examples of matters that need to be agreed upon
during the handshake:
	- What version of TLS will be used?
	- What key will be used to exchange further data and how will it

7	 The transport layer and the internet layer are part of the internet
protocol suite, a model to describe network traffic. This model is
described in RFC 1122, available at https://datatracker.ietf.org/doc/
rfc1122/.

8	 The specification of TLS 1.3 is documented in RFC 8446, available at
https://datatracker.ietf.org/doc/rfc8446/.

https://www.forumstandaardisatie.nl/standaard/tls
https://www.rijksoverheid.nl/ministeries/ministerie-van-binnenlandse-zaken-en-koninkrijksrelaties/documenten/kamerstukken/2018/10/16/kamerbrief-over-verhogen-informatieveiligheid-bij-de-overheid
https://www.rijksoverheid.nl/ministeries/ministerie-van-binnenlandse-zaken-en-koninkrijksrelaties/documenten/kamerstukken/2018/10/16/kamerbrief-over-verhogen-informatieveiligheid-bij-de-overheid
https://www.rijksoverheid.nl/ministeries/ministerie-van-binnenlandse-zaken-en-koninkrijksrelaties/documenten/kamerstukken/2018/10/16/kamerbrief-over-verhogen-informatieveiligheid-bij-de-overheid
https://www.rijksoverheid.nl/ministeries/ministerie-van-binnenlandse-zaken-en-koninkrijksrelaties/documenten/kamerstukken/2018/10/16/kamerbrief-over-verhogen-informatieveiligheid-bij-de-overheid
https://www.pcisecuritystandards.org
https://autoriteitpersoonsgegevens.nl/nl/onderwerpen/beveiliging/beveiliging-van-persoonsgegevens#moet-ik-altijd-https-gebruiken-voor-mijn-website-6069
https://autoriteitpersoonsgegevens.nl/nl/onderwerpen/beveiliging/beveiliging-van-persoonsgegevens#moet-ik-altijd-https-gebruiken-voor-mijn-website-6069
https://autoriteitpersoonsgegevens.nl/nl/onderwerpen/beveiliging/beveiliging-van-persoonsgegevens#moet-ik-altijd-https-gebruiken-voor-mijn-website-6069
https://datatracker.ietf.org/doc/rfc1122/
https://datatracker.ietf.org/doc/rfc1122/
https://datatracker.ietf.org/doc/rfc8446/

8 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

be chosen (key exchange)?
	- Which certificate will the server use to prove its identity to the

client?
	- Will the client present a certificate? If so, which?
	- What cipher suite will be used to encrypt data during the

application phase?

The handshake is started by the client. During the handshake, the
client and server negotiate four cryptographic algorithms, one
algorithm for key exchange, one algorithm for digital signatures,
one algorithm for bulk encryption and an algorithm for hashing.
In these guidelines, this set of four algorithms is called an
algorithm selection. 9 Then, the client verifies the authenticity of
the certificate that the server provides. If the client offers a
certificate to the server, its authenticity is verified by the server.10

After the handshake phase completes, the application phase starts.
During the application phase, the TLS session is available as a
secure tunnel for data transfer. Applications can use this tunnel to
send their traffic between client and server. Applications do not
have to concern themselves with the inner working of this tunnel:
they can trust it as an abstract communications channel that
guarantees confidentiality and integrity of information.

Software libraries

TLS is used in many different software applications. Programming
all functionality in TLS from scratch is a lot of work and requires
specialist knowledge. That is why most software does not contain
its own code for TLS. Instead, they use a TLS software library.

There are different TLS software libraries available. Some are free
software; others are available as a proprietary product. They can be
included in operating systems or delivered separately. Well known
TLS libraries include OpenSSL11, SChannel12, NSS13 and mbed TLS14.
These guidelines do not judge the security of specific TLS libraries.
All software contains bugs, including TLS libraries. Bugs can lead to
vulnerabilities. Every library has its advantages and disadvantages.
Not every setting for TLS is available in each library.

9 	 See the callout Changed meaning of cipher suite in TLS 1.3 in the chapter
Guidelines for the reason behind this naming convention.

10	 Note that TLS versions prior to TLS 1.3 do not fully encrypt the
information exchanged during the handshake. This affects client
certificates, which are sent unencrypted.

11	 https://www.openssl.org/

12	 https://docs.microsoft.com/en-us/windows/desktop/secauthn/
secure-channel

13	 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS

14	 https://tls.mbed.org/

Ask the supplier of your chosen TLS library (or the vendor that
embeds it) about the following topics to get a rough understanding
of its dependability. Does your chosen TLS software library:
	- document how to report security vulnerabilities?
	- have developers that have access to enough resources to provide

(security) support?
	- have a good track record of responding to past attacks on TLS or

vulnerabilities in its implementation in the library?
	- make their security-updates known to their users and distinct

from feature updates?
	- get audited or independently reviewed?
	- use constant time implementations to harden against attacks

based on timing side channels?

The NCSC advises to make conscious choices on the use of TLS
libraries:
	- Always use the most recent version of your chosen TLS library.

This gives its creators the most time to fix vulnerabilities.
	- Choose only settings that are necessary to meet business

requirements. This way, bugs in non-necessary functionality
will not lead to system vulnerabilities. The chapter Usage
guidance helps with this selection.

The importance of random numbers

Random numbers play a crucial role in many applications of
cryptography, including TLS. TLS uses random numbers in multiple
places in the protocol.

The quality of the random numbers used is critical to the security
of TLS. Choosing the right settings for TLS is important, but no
single setting can take away the risks introduced by using random
numbers of low quality.

Every operating system and every TLS library contains methods to
generate random numbers. In addition, hardware is available for
the generation of random numbers. These hardware modules
produce random numbers faster and of higher quality than
software-only methods do.

You can find more background and advice on methods to generate
random numbers in the section Random number generators in the
appendix Further considerations.

https://www.openssl.org/
https://docs.microsoft.com/en-us/windows/desktop/secauthn/secure-channel
https://docs.microsoft.com/en-us/windows/desktop/secauthn/secure-channel
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://tls.mbed.org/

9 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

2	 Usage guidance

The guidelines in this publication are aimed at the security of a
TLS configuration. In practice, security is not the only concern
when choosing a configuration. The TLS configuration of the server
should also be compatible with the TLS configurations of all clients
that need to connect to the server. The configurations of client and
server need to match in certain aspects.

For some choices, different selections for client and server do not
exclude one another. This includes supported versions, algorithm
selections and groups. To allow a client and server to communi-
cate, each of these options needs to have one choice that both
client and server support. For example, if the client supports TLS
1.0, TLS 1.1 and TLS 1.2 it can communicate with a server that
supports TLS 1.0 and TLS 1.1, but not with a server that only
supports TLS 1.3. The same principle applies to algorithm selec-
tions and supported groups.

Other choices determine how long the cryptographic key or
parameter is. This includes RSA keys and ECDSA keys. To allow a
client and server to communicate, both client and server need to
support the chosen length of the key or parameter. Older software
does not always support keys or parameters of sufficient length and
newer software sometimes prevents the use of keys or parameters
of insufficient length.

Finally, there are options: configurations that can only be turned
‘on’ or ‘off’. For example, a server does or does not support TLS
compression. Configuring a server with the options that are
included in this publication is not known to cause compatibility
problems with clients.

TLS has a plethora of options beyond those discussed. We only
discuss options that influence the security of TLS and that are
sometimes not secure by default.

Scenario 1:
Control over both client and server

In some situations, the party that has control over the configura-
tion of the server also has control over the configuration of the
client. An example is a web server serving an internal web
application. This web server is only available to the same
organisation’s clients. The NCSC advises to use Good settings in
this scenario: this is the most secure and most future-proof
configuration. In the chapter Versions, algorithms and options you can
find which settings are Good.

Step by step
1.	 Make an inventory of the available TLS options that are available

on the server.
2.	 Inventory the different clients that will make connections to the

server.
3.	 Inventory for each type of client the set of settings that are

supported.15

4.	 Choose Good settings for the following options:
a.	 TLS version for the server. Ensure that every client supports a

version that is also supported by the server.
b.	 Algorithm selections for the server. Ensure that every client

supports an algorithm selection that is also supported by the
server.

c.	 Key lengths for the server. Ensure that every client supports
the chosen length.

d.	 Supported elliptic curves for the server. Ensure that every
client supports an elliptic curve that is also supported by the
server. Finite field groups supported by the server, in case
older clients do not support elliptic curves. In that case,
ensure that every client supports a Sufficient finite field
group that is also supported by the server.

e.	 Other options for the server, unless there are strong reasons
to choose Sufficient settings. These reasons flow from the
client inventory created.

15	 An overview of TLS configurations for different types of clients is
available from https://www.ssllabs.com/ssltest/clients.html.

https://www.ssllabs.com/ssltest/clients.html

10 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

5.	 Does the server lack support for a Good setting that clients
support? You have three options:
a.	 Replace the clients by a type that does support Good settings

for this option.
b.	 Replace the server by a type that does support Good settings

for this option.
c.	 Choose a Sufficient setting for this option that is supported

by both clients and server.
6.	 Does the server lack support for a Good and Sufficient setting

that clients support? You have three options:
a.	 Replace the clients by a type that does support (other) Good

or Sufficient settings for this option.
b.	 Replace the server by a type that does support Good or

Sufficient settings for this option.
c.	 Choose a Phase out setting for this option that is supported

by both clients and server. This option is least preferred,
because it comes with additional risk and is the least
future-proof of all available configurations.

7.	 Configure the server with the chosen configurations. The TLS
configuration is part of the software that uses the TLS connec-
tion. For example, if you want to offer HTTPS then TLS is
configured as part of the web server software.

8.	 Test to establish that this configuration works for all types of
clients. Do you run into any compatibility issues? Then go back
to step 5.

9.	 Document the selected settings. Spend time on at least the
following:
a.	 Choose and document conditions for scheduled removal of

any Phase out settings that have been chosen. See Scheduling
removal of phase out configurations in the chapter Guidelines for
examples of clear conditions.

b.	 Document the reasons for choosing Sufficient instead of
Good settings.

Scenario 2:
Only control over the server

In other situations, the entity with control over the configuration
of the server does not control the configuration of (all) clients that
connect to the server.16 An example is a web server serving a public
website. The NCSC advises to use Good settings and to complement
these with Sufficient settings in this scenario. In some deploy-
ments, it may be necessary to include Phase out settings while
clients transition away from these less secure configurations. In
the chapter Versions, algorithms and options you can find which
settings that are respectively Good, Sufficient and Phase out.

16 	 This heading can also be read as “Only control over the client”, though
clients are not the focus of these guidelines. An example is an e-mail
service that acts as a TLS client when sending e-mail.

Step by step
1.	 Make an inventory of the types of clients that (need to) make

connections to the server.17 This is a requirement that is usually
determined in consultation with the business owner.
a.	 Make the trade-off visible: the value of compatibility versus

the risk and associated support cost of increasingly fragile
configurations.Make an inventory of the available TLS
options that are available on the server.

2.	 Choose Good and Sufficient TLS-versions for the server.
3.	 Choose Good and Sufficient algorithms for the server. Support

a broad range of Sufficient algorithms. These are often required
for compatibility with older clients. Do not support more
Sufficient algorithms than required for compatibility.

4.	 Choose Sufficient lengths of keys. Choose Good lengths
instead if you are sure that all clients support these.

5.	 Choose Good elliptic curves for the server. Do you have reasons
to assume that not every client supports these? Then also
choose Sufficient elliptic curves. Do not support more curves
than required for compatibility.

6.	 Some old clients do not support elliptic curves. Do you need to
support these clients? Then select Sufficient finite field groups.
Do not support more finite field groups than necessary for
compatibility.

7.	 Configure the server with the chosen configurations. The
TLS configuration is part of the software that uses the TLS
connection. For example, if you want to offer HTTPS then
TLS is configured as part of the web server software.

8.	 Think about the software that clients will use to connect.
Test whether clients using this software can connect.

9.	 Are you having compatibility problems?18 Track down which
options cause these problems.
a.	 Usually these problems can be solved by exchanging or

supplementing Good settings with Sufficient settings.
b.	 If the inventory created in steps 1 and 9 includes very old

client software, you may need to temporarily include Phase
out settings in your configuration. Phase out settingss are
known to be fragile with respect to evolving attack
techniques and merely provide a slim security margin.
Do not support more Phase out algorithms than required for
compatibility.

11.	Choose and document clear criteria for the scheduled removal
of any Phase out settings that have been chosen. See Scheduling
removal of phase out configurations in the chapter Guidelines for
examples of clear conditions. If removal impacts the require-
ment defined in step 1, this will usually involve consultation
with the business owner.

17 	 Ideally by using TLS connection statistics gathered on the server, or on a
similar service.

18 	 Does your organization make use of TLS interception, either locally on
the client or on the network? This may be the source of your
compatibility problem. The factsheet “TLS Interception” treats
considerations and preconditions for the deployment of TLS
interception. (https://english.ncsc.nl/publications/factsheets/2019/
juni/01/factsheet-tls-interception)

https://english.ncsc.nl/publications/factsheets/2019/juni/01/factsheet-tls-interception
https://english.ncsc.nl/publications/factsheets/2019/juni/01/factsheet-tls-interception

11 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Points of particular interest

	- The guidelines in this publication influence the selection of a
supplier for certificates: not every certificate supplier can supply
every type of certificate. So discuss your TLS configuration with
the administrators of certificates and public key infrastructures
(PKIs) within your organisation.

	- Checking TLS configurations can be part of vulnerability
management, penetration tests and the regular audit cycle
within your organisation. Several tools and websites exist that
enable you to perform similar checks yourself.19 You can
compare the results of these checks to the guidelines. This way,
you are ahead of any findings during a penetration test or audit.

	- Operating systems usually contain more than one TLS software
libary. Make sure you know which software library is used by the
server software and ensure it remains up to date.

Diverging from these usage
guidelines

The NCSC advises to set up TLS configurations based on these
guidelines at all times. Still, this may prove unattainable in
exceptional circumstances. Keep the following in mind in such
situations:
	- Perform risk analysis when diverging from the guidelines.

Diverging will have a negative impact on security. Why is this
acceptable? How did you arrive at that conclusion? What
additional measures will you take to mitigate the resulting
risks? Document the divergences and results of these
considerations.

	- Something is better than nothing. Even a connection that
is protected by an Insufficient TLS configuration can be
impenetrable to some attackers. Inability to fully meet the
guidelines can never be a reason to disable TLS in its entirety.

	- Assessing a TLS configuration requires extensive knowledge.
If you are diverging from this usage guidance, then discuss your
TLS configuration and the resulting risks with a domain expert.

19	 Examples of such tools are testssl.sh (https://testssl.sh/) and sslyze
(https://github.com/nabla-c0d3/sslyze). The website Internet.nl allows
online testing against the guidelines in this publication for web and
e-mail servers (https://www.internet.nl/). The website Qualys SSL labs
allows for a similar online check for web servers (https://www.ssllabs.
com/ssltest/).

https://testssl.sh/
https://github.com/nabla-c0d3/sslyze
https://www.internet.nl/
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/

12 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

3	 Guidelines

In the guidelines, repeated references are made to configurations
that are Good, Sufficient or Phase out. All configurations refer-
enced can be found in the chapter Versions, Algorithms and Options.

Versions

Recent versions of TLS are more secure than older versions. The
older versions of TLS contain vulnerabilities that cannot be
repaired. These must therefore be avoided. A TLS configuration can
support more than one version.

Number Guideline

B1-1 All supported versions of TLS are Good, Sufficient or

Phase out

See Chapter 4 – Versions, algorithms and options, Table 1 – Versions

Algorithm selections

For each connection, the client and server negotiate the use of four
cryptographic algorithms. One algorithm for key exchange, one
algorithm for digital signatures in certificate verification, one
algorithm for bulk encryption and one algorithm for hashing. We
will refer to a set of four selected cryptographic algorithms as an
algorithm selection. The pair of cryptographic algorithms for bulk
encryption and hashing are known as a cipher suite and are used
for record protection.

Examples of these algorithms include:
	- Certificate verification: RSA, ECDSA, etc.
	- Key exchange: ECDHE, DHE, RSA, etc.
	- Bulk encryption: AES-GCM, ChaCha20-Poly1305, etc.
	- Hashing: SHA-1, SHA-256, etc.

Changed meaning of cipher suite in TLS 1.3

The first version of these guidelines used the term cipher suite
instead of algorithm selection. We changed our use of terminol-
ogy to stay in step with a change in TLS 1.3.

A cipher suite up until TLS 1.2 included the algorithms for key
exchange and digital signatures. Most of the resulting hundreds of
combinations are listed in the protocol registry.

To avoid this naming explosion, cipher suites in TLS 1.3 only
contain the algorithms used for bulk encryption and hashing.

Figure 1 shows the changed cipher suite notation in TLS 1.2 and
TLS 1.3.

To set up a connection, TLS negotiates the use of an algorithm for
each of these purposes. There are hundreds of valid combinations
available. A TLS configuration can support multiple algorithm
selections.

Figure 1 – Cipher suite notation in TLS 1.2 and TLS 1.3. The colours indicate the different algorithms and their purpose.

In TLS 1.3, the cryptographic algorithms for key exchange and certificate verification are no longer considered part of the cipher suite.

13 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Number Guideline

B2-1 All supported algorithm selections contain a Good,

Sufficient or Phase out algorithm for certificate verifica-

tion.

See Chapter 4 – Versions, algorithms and options,

Table 2 – Algorithms for certificate verification.

B2-2 All supported algorithm selections contain a Good,

Sufficient or Phase out algorithm for key exchange.

See Chapter 4 – Versions, algorithms and options,

Table 4 – Algorithms for key exchange.

B2-3 All supported algorithm selections contain a Good,

Sufficient or Phase out algorithm for bulk encryption.

See Chapter 4 – Versions, algorithms and options,

Table 6 – Algorithms for bulk encryption.

B2-4 All supported algorithm selections contain a Good,

Sufficient or Phase out algorithm for hashing.

See Chapter 4 – Versions, algorithms and options, Table 7 – Hash

functions for bulk encryption and the generation of random numbers.

B2-5 All supported algorithm selections are Good, or the

algorithm selections are chosen by the server using the

prescribed ordering.

See Chapter 4 – Versions, algorithms and options, section Prefer faster

and safer algorithms.

Certificates

TLS allows the server to prove its identity using an X.509 certificate.
The client can only establish through a certificate that it communi-
cates with the server and not a third party intending to listen in or
manipulate its communication. Acquiring and managing certifi-
cates is not part of these guidelines. See the section Management of
certificates in the appendix Further considerations for pointers.

Number Guideline

B3-1 The server offers a certificate for authentication.

B3-2 The signed fingerprint of the certificate has been created

using a Good, Sufficient or Phase out algorithm for hashing

(see “Hash functions for certificate verification”).

See Chapter 4 – Versions, algorithms and options,

Table 3 – Hash functions for certificate verification.

B3-3 If the server offers a certificate with an RSA key, the length

of this key is Good or Sufficient.

See Chapter 4 – Versions, algorithms and options,

Table 8 – RSA key size.

Number Guideline

B3-4 If the supplied certificate is not directly signed by a root CA,

the server offers intermediate CA certificates that

authenticate the path between the root CA and the supplied

certificate.

Key exchange

The algorithm for key exchange specifies how a client and server
determine a key for encrypted communication. Ephemeral
Diffie-Hellman is a method to derive a temporary shared key
between parties. There are variants of Diffie-Hellman based on
finite fields (DHE) and elliptic curves (ECDHE). More information
on the use of ephemeral keys can be found in the section Forward
Secrecy in the appendix Further considerations.
These guidelines do not specify a minimum size for the secret
parameter used in ephemeral Diffie-Hellman. This is generally
hard-coded in the TLS software library or derived from a chosen
group, not a setting an administrator can configure.

Number Guideline

B4-1 If DHE is used for key exchange, the secret parameter is

ephemeral, chosen uniformly at random20 and of

appropriate size for the chosen finite field.

B4-2 If ECDHE is used for key exchange, the secret parameter

is ephemeral, chosen uniformly at random20 and of

appropriate size for the chosen group.

Elliptic curves

Computations with elliptic curves are said to happen ‘on’ an elliptic
curve. The curve is the context for the computation. For secure
communication, the choice of a suitable curve is necessary. Not
every curve offers the same security.

Number Guideline

B5-1 All elliptic curves used are Good, Sufficient or Phase out.

See Chapter 4 – Versions, algorithms and options,

Table 9 – Supported elliptic curves.

Note that B5-1 applies both to key exchange based on ECDHE and to
digital signatures using ECDSA and EdDSA.

20 	 The NCSC advises against the use of variations on the TLS protocol that
invalidate the security analysis of TLS 1.3 and its forward secrecy
property by fixing a DH parameter in some way. At the time of writing
the ETSI “Enterprise Transport Security (ETS)” specification (ETSI TS 103
523-3), previously known as “eTLS”, is one such example. The NCSC
factsheet “TLS Interception” treats considerations and preconditions for
the deployment of TLS interception using TLS proxies.

14 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Finite fields

Computations with finite fields are said to happen ‘in’ a finite field.
The finite field is the context for the computation. For secure
computation, the choice of a suitable finite field is necessary.
Not every finite field offers the same security, interoperability or
efficiency.

Number Guideline

B6-1 All finite fields used are Good, Sufficient or Phase out.

See Chapter 4 – Versions, algorithms and options,

Table 10 – Supported finite field groups.

Other options

TLS has a plethora of options beyond those discussed. We only
discuss options that influence the security of TLS and that are
sometimes not secure by default.

Compression
The use of compression can give an attacker information about the
secret parts of encrypted communication. Because data is first
compressed and then encrypted, the effect of compression can
yield information on the data that is sent.

Number Guideline

B7-1 The settings for compression are Good, Sufficient or

Phase out.

See Chapter 4 – Versions, algorithms and options,

Table 11 – Compression.

Renegotiation
Older versions of TLS (prior to TLS 1.3) allow forcing a new
handshake. This is called renegotiation.

Number Guideline

B8-1 The settings for renegotiation are Good, Sufficient or

Phase out.

See Chapter 4 – Versions, algorithms and options, Table 12 – Insecure

renegotiation; and Table 13 – Client-initiated renegotiation.

0-RTT
0-RTT is an option in TLS 1.3 that transports application data
during the first handshake message. 0-RTT does not provide
protection against replay attacks at the TLS layer and is therefore
hard to use securely in an application agnostic environment.

Number Guideline

B9-1 The settings for 0-RTT are Good, Sufficient or Phase out.

See Chapter 4 – Versions, algorithms and options, Table 14 – 0-RTT.

Scheduling removal of Phase out
configurations

Phase out settings are known to be fragile with respect to evolving
attack techniques. They provide a slim security margin relative to
their Sufficient or Good counterparts. They are at a higher risk of
becoming Insufficient in the near future.
The use of Phase out settings should be subject to written
deprecation conditions.

Number Guideline

B10-1 Any supported configuration that is Phase out has a

documented condition that schedules its removal.

B10-2 Any configuration that is Phase out is not used past the

documented condition that schedules its removal.

There is value in removing Phase out configurations when no
longer required, because removed configurations can no longer be
attacked or be used to attack other parts of TLS. At the same time,
compatibility requirements for some applications may require
their support until client support improves.

The NCSC advises not to support Phase out settings indefinitely.21
Document what requires their use and include conditions that
allow for removal when met. Thus, removal is scheduled upon use.

Choosing when to cease support is application specific. The web
ecosystem deprecates old TLS versions and configurations faster22
than the e-mail ecosystem.23 These guidelines are application
agnostic and therefore only contain generic advice.

The following are examples of documented conditions. Phase out
configurations A, B and C will be removed:
	- on <date>;
	- with the release of <web browser> version X in the stable release

channel;
	- when the relative number of users drops below Y%;
	- when the absolute number of users drops below Z per month.

21 	 Supporting outdated (client) software is also problematic for reasons
unrelated to TLS: it is more likely to contain known security
vulnerabilities that have been patched in later versions.

22 	 For example: by summer 2020 all modern web browsers had disabled
support for Phase out configurations suchs as TLS 1.0, TLS 1.1 and DHE.

23 	 For example: removing Phase out settings may cause your mail servers
to exchange unencrypted e-mail with mail servers outside your control.
Retain the Phase out settings and document appropriate conditions for
removal if your statistics show this to be the case.

15 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

4	 Versions, algorithms and
options

This chapter treats TLS versions, algorithms, key size & choice of
groups and options. The security of a configuration depends on the
selections in each of these categories.

The numbers in parentheses refer to the references on the last page
of this document.

Versions

Recent versions of TLS are more secure than older versions. The
oldest three versions of TLS, SSL 1.0, SSL 2.0 and SSL 3.0 cannot be
used securely. The most recent version of TLS, TLS 1.3 offers the
best protection.

Version Status

TLS 1.3 Good (3; 4)

TLS 1.2 Sufficient (3; 4)

TLS 1.1 Phase out (3; 4)

TLS 1.0

SSL 3.0 Insufficient (3; 4)

SSL 2.0

SSL 1.0

Table 1 – Versions

Cryptographic algorithms

The security of a TLS connection depends on the algorithms that
are configured. The guidelines to determine algorithm selections
consist of guidelines in four domains:
1.	 Certificate verification
2.	 Key exchange
3.	 Bulk encryption
4.	 Hashing

The first three domains are covered in their own section. Hashing is
used as building block and covered within the other domains.

Figure 2 summarizes algorithm selections and their security level
and shows the correspondence between algorithm selection and
cipher suite notation in TLS 1.2 and TLS 1.3. The security levels
apply to algorithm selections as follows.

Good, Sufficient and Phase out
A Good algorithm selection is an algorithm selection that consists
of Good choices for each of the domains. Good algorithms offer a
security equivalent of at least 128 bits. Good algorithms by
definition meet the guidelines B2-1 up to B2-4. See the row labelled
Good in Figure 2 for examples of combinations that result in a
Good algorithm selection.

A Sufficient algorithm selection is a selection that consists of
Sufficient choices and possibly Good choices for each of the
domains. Sufficient algorithms by definition meet the guidelines
B2-1 up to B2-4. See the row labelled Sufficient in Figure 2 for
examples of combinations that result in a Sufficient algorithm
selection (possibly combined with choices from the row Good).
Both Good and Sufficient algorithm selections only contain key
exchange algorithms that provide forward secrecy.

A Phase out algorithm selection is a selection that consists of
Phase out choices and possibly Good or Sufficient choices for each
of the domains. See the row labelled Phase out in Figure 2 for
examples of combinations that result in a Phase out algorithm
selection (possibly combined with choices from the rows Good or
Sufficient).

Prefer faster and safer algorithms
The NCSC advises to configure the server to prefer Good over
Sufficient over Phase out algorithm selections. This prioritizes the
fastest and safest algorithms. Choose your own ordering within the
different security levels. This is chiefly a performance
consideration.

16 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Figure 2 – Cipher suite notation in TLS 1.2 and TLS 1.3. The table summarizes algorithm selections and their security level.
Not included in the (old) cipher suite notation are: versions; hash functions for certificate verification; hash functions for key exchange; key sizes & choice of groups; and options.
These can be found in their respective sections. For ordering, refer to the section Prefer faster and safer algorithms.

When the server only supports Good algorithm selections, it may
honor the client's preference and does not need to enforce its own
ordering.

Algorithms for certificate verification
The verification of certificates makes use of digital signatures.
To guarantee the authenticity of a connection, a trustworthy
algorithm for certificate verification must be used. The algorithm
that is used to sign a certificate is selected by its supplier.

The certificate specifies the algorithm for digital signatures that is
used by its owner during the key exchange. It is possible to
configure multiple certificates to support more than one
algorithm.

Algorithm Status

ECDSA Good (2; 3)

RSA

DSS24 Insufficient

EXPORT-variants

PSK

Anon

NULL

Table 2 – Algorithms for certificate verification

The algorithm EdDSA is Good, but not (yet) permitted for use by
suppliers of certificates (1) and therefore not added to the table.

24 	 The algorithm DSS has been uncommon for a long time. It is Insufficient
because rarely used code sees less testing and has a higher chance to
contain undiscovered vulnerabilities.

Hash functions for certificate verification
The digital signatures on certificates use hash functions. The
security of the chosen hash function is important for this purpose.

Algorithm Status

SHA-512 Good (1; 3)

SHA-384

SHA-256

SHA-1 Insufficient (1; 3)

MD5

Table 3 – Hash functions for certificate verification

Algorithms for key exchange
A TLS connection starts with a key exchange to establish a session
key. Key exchange algorithms offering forward secrecy provide
confidentiality of past communications in the event of secret key
compromise. Static key exchange algorithms use the public key
embedded in the certificate to transport an encrypted copy of the
session key. Key exchanges based on ECDHE and DHE provide
forward secrecy. Key exchanges based on static RSA, ECDH and
DH keys in certificates do not.25

25 	 Confidentiality under static RSA, ECDH and DH relies on keeping long
term keys secret. An attacker can steal this long term key in the future
and break confidentiality of past traffic. Under ECDHE and DHE, keys are
kept for a very short term and are then destroyed, which leaves nothing
to be stolen.

17 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Algorithm Status

ECDHE Good (3)

DHE Sufficient26

RSA Phase out (2; 3)

DH27 Insufficient

ECDH27

KRB5

NULL

PSK

SRP

Table 4 – Algorithms for key exchange

Use ECDHE over DHE

Elliptic curve cryptography is now widely deployed. Cryptography
based on elliptic curves (ECDSA, ECDHE) is the fastest choice for
TLS servers.

Before the broad availability of elliptic curve cryptography, DHE was
the only mechanism to achieve forward secrecy in TLS. With the
availability of elliptic curve Diffie-Hellman ephemeral (ECDHE)
this is no longer the case. These guidelines advise the use of
ECDHE over DHE for performance reasons.

Hash functions for key exchange28, 29

The certificate owner uses a digital signature during the key
exchange to prove ownership of the secret key corresponding to
the certificate. The owner creates this digital signature by signing
the output of a hash function. The use of a secure hash function is
important for this purpose.

Note: The following table differs from the others in this chapter by
the reversed effect of Phase Out. It encourages support of modern
hash functions instead of prohibiting weaker alternatives, because
these are required in TLS 1.2.

26 	 DHE is classified Sufficient and not Good because it is very slow when
secure parameters are used.

27 	 Static (EC)DH requires special certificates and is seldom used in TLS.
Their use is Insufficient because rarely used code sees less testing and
has a higher chance to contain undiscovered vulnerabilities.

28 	 This section covers the use of hash functions for key confirmation and
handshake integrity. The use of hash functions for key derivation is
covered under Hash functions for bulk encryption and the generation of random
numbers.

29 	 These are the most common algorithms for hashing. SHA-224 is also
Sufficient but not used much.

SHA2 support for signatures30 Status

Yes (SHA-256, SHA-384 or SHA-512 supported) Good (3; 4)

No (SHA-256, SHA-384 or SHA-512 not supported) Phase out (3; 4)

Table 5 – Hash functions for key exchange

Changes to RSA for digital signatures

The digital signature scheme to prove possession of an RSA
secret key has been replaced in TLS 1.3. A modern padding scheme
(RSA-PSS) replaces the previous RSA-PKCS#1 v1.5 padding
scheme. This improvement applies retroactively: it is required for
servers that support both TLS 1.2 and TLS 1.3. Use the latest
available version of your TLS software library to make use of these
improvements.

Algorithms for bulk encryption31

During the application phase, (data) records are encrypted in bulk
by a symmetric encryption algorithm. A symmetric encryption
algorithm usually consists of a cipher and a mode of operation.
Algorithms that tightly integrate authentication and encryption in
one mode of operation are to be preferred. These so-called AEAD
algorithms include AES-GCM and ChaCha20-Poly1305. The most
popular symmetric encryption algorithm is AES. TLS supports AES
with two key sizes (128 and 256 bits), while ChaCha20-Poly1305
supports a single (256 bits) key size.

30 	 Note that SHA2 support for signatures is generally a property of a TLS
software library, not a configuration. An update to your library may be
required if you do not support the use of SHA2 for key exchange.

31 	 These are the most common algorithms for bulk encryption. Other Good
algorithms are AES-{256,128}-CCM. CAMELLIA is Sufficient. Other
Phase out algorithms include SEED and ARIA. These algorithms are
rarely used. If a system supports these algorithms it is worth checking if
this is necessary.

18 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Algorithm Status

AES-256-GCM Good (3)

ChaCha20-Poly1305

AES-128-GCM

AES-256-CBC Sufficient (4)

AES-128-CBC

3DES-CBC Phase out32 (2; 3)

AES-256-CCM_833 Insufficient

AES-128-CCM_832

IDEA

DES

RC4

NULL

Table 6 – Algorithms for bulk encryption

Hash functions for bulk encryption and the generation of random
numbers
Some algorithms for bulk encryption use hash functions to provide
authenticity (MAC).34 The security of the chosen hash function is
important for this purpose.

TLS also uses the selected hash function as a component in the
generation of random numbers (PRF). The security of the chosen
hash function is also important for this purpose.

Algorithm35, 36 Status

HMAC-SHA-512 Good (3; 4)

HMAC-SHA-384

HMAC-SHA-256

HMAC-SHA-1 Sufficient (3; 4)

HMAC-MD5 Insufficient (3)

Table 7 – Hash functions for bulk encryption and the generation of random numbers

32 	 3DES-CBC is a legacy cipher with a 64 bit block size. Faster and safer
alternatives are widely available and 3DES-CBC is seldom necessary for
compatibility. The limited block size makes 3DES-CBC vulnerable under
very specific circumstances (Sweet32-attack). 3DES-CBC is the only
algorithm for bulk encryption available in TLS 1.0 that is not Insufficient.
Once you stop supporting TLS 1.0 you should disable 3DES-CBC.

33 	 AES-CCM_8 is a variant of AES-CCM with a truncated authentication tag,
which has a lower security equivalent for integrity protection.

34 	 AEAD algorithms tightly integrate authentication and do not use a
separate hash function for record protection. When a cipher suite that
includes an AEAD refers to a hash function, it is only used as a
component in the generation of random numbers.

35 	 These are the most common algorithms for hashing. SHA-224 is also
Sufficient but not used much.

36 	 Other documents may refer to these algorithms without the
HMAC- prefix.

Caution: SHA-1 is only Sufficient for bulk encryption and as a
component in the generation of random numbers. It is Insufficient
for use in digital signatures on certificates, as stated in the section
Hash functions for certificate verification. Its use as part of the key
exchange without supporting newer alternatives is also
Insufficient, as stated in the section Hash functions for key exchange.

Key sizes and choice of groups

RSA key size
The security of RSA for encryption and digital signatures is tied to
the key length of the public key.37

Length of RSA-keys Status

At least 3072 bit Good (2; 3)

2048 – 3071 bit Sufficient (2)

Less than 2048 bit Insufficient

Table 8 – RSA key size

Supported elliptic curves38

Not all elliptic curves are suitable for use in TLS. The security of
ECDSA and EdDSA digital signatures and the ECDHE key exchange
depend on the chosen curve. The table lists the most commonly
used curves.

Elliptic curve Status

secp384r1 Good (3; 4)

secp256r1

curve 448

curve 25519

secp224r1 Phase out (3; 4)

Other curves Insufficient

Table 9 – Supported elliptic curves

Supported finite field groups
The security of the Diffie-Hellman ephemeral key exchange (DHE)
depends on the lengths of the public and secret keys used within
the chosen finite field group. The larger key sizes required for the
use of DHE come with a performance penalty. Carefully evaluate
and use ECDHE instead of DHE if you can.

37	 It is tied to the public modulus, which is part of the public key.

38 	 These are the most common elliptic curves in TLS. Secp521r1 is Good.
The curves brainpoolP512r1, brainpoolP384r1 and brainpoolP256r1 are
Sufficient. These elliptic curves are rarely used in TLS and therefore not
added to the table. If a system supports these curves it is worth checking
if this is necessary.

19 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Standardized finite field groups

These guidelines advise the use of standardized groups. Larger
groups are chosen to mitigate against the risk of precomputation
by attackers.

This conservative approach enlarges the performance penalty
that comes with the use of DHE. Carefully evaluate and use ECDHE
instead of DHE if you can.

The complexity associated with free choice of finite field groups
has been a source of vulnerabilities in the past. The TLS 1.3
specification only includes a limited number of finite field groups
for DHE to reduce this complexity. These guidelines limit Sufficient
groups for TLS to those used in TLS 1.3 (and specified in RFC 7919).

Finite field group Status

ffdhe4096 (RFC 7919) Sufficient39 (4)

ffdhe3072 (RFC 7919)

ffdhe2048 (RFC 7919) Phase out

Other groups Insufficient

Table 10 – Supported finite field groups

Options

Compression
The use of compression can give an attacker information about the
secret parts of encrypted communication. An attacker that can
determine or control parts of the data sent can reconstruct the
original data by performing a large number of requests. Data that
contains more repetitions results in better compression than data
without repetitions. An attacker can thus establish if a known part
occurs more often in the data sent. This way, use of compression
can negatively impact security.

TLS compression is used so rarely that disabling it is generally not a
problem. This is different for application-specific compression. For
example, compression in the HTTP protocol is commonly used to
make more efficient use of available bandwidth.

39 	 These groups are Sufficient and not Good solely because they are slow.
DHE key exchange with larger group sizes is significantly more resource
intensive than a security equivalent ECDHE exchange. The groups
ffdhe6144 and ffdhe8192 (RFC 7919) are also Sufficient, but even
slower.

Consider the trade-offs involved with application-level compres-
sion. If you choose to use application-level compression, verify if it
is possible to mitigate related attacks at the application level.
An example of such a measure is limiting the extent to which an
attacker can influence the response of a server.

Compression option Status

No compression Good

Application-level compression Sufficient40

TLS compression Insufficient41

Table 11 – Compression

Renegotiation
Older versions of TLS (prior to TLS 1.3) allow forcing a new
handshake. This so-called renegotiation was insecure in its
original design. The standard was repaired and a safer renegotia-
tion mechanism was added. The old version is since called insecure
renegotiation and should be disabled.

Allowing clients to initiate renegotiation is generally not necessary
and opens a server to DoS-attacks inside a TLS connection. An
attacker can perform similar DoS-attacks without client-initiated
renegotiation by opening many parallel TLS connections, but these
are easier to detect and defend against using standard mitigations.

Insecure renegotiation Status

Off42 (or N/A for TLS 1.3) Good

On Insufficient

 Table 12 – Insecure renegotiation

Client-initiated renegotiation Status

Off (or N/A for TLS 1.3) Good

On Sufficient

Table 13 – Client-initiated renegotiation

40 	 The use of application specific compression (such as HTTP compression)
results in a TLS configuration that is vulnerable to the BREACH attack.
Disabling application specific compression may have a negative effect
on system performance.

41 	 The use of TLS compression results in a TLS configuration that is
vulnerable to the CRIME attack.

42 	 Some call this “secure renegotiation”.

20 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

0-RTT
Old versions of TLS use a minimum of two round trips of communi-
cation between client and server before application data is
transported. TLS 1.3 halves this overhead by requiring only a single
round of communication. 0-RTT is an option in TLS 1.3 that further
reduces this overhead. It transports application data during the
first handshake message. The trade-off is that 0-RTT does not
provide protection against replay attacks at the TLS layer and is
therefore hard to use securely in an application agnostic
environment.

0-RTT Status

Off (or N/A prior to TLS 1.3) Good

On Insufficient

Table 14 – 0-RTT

OCSP stapling
The TLS client can verify the validity of the X.509 certificate
presented by the server by contacting the certificate supplier using
the OCSP-protocol. OCSP provides a certificate supplier with
information on clients communicating to the server: this may be a
privacy risk. A server can also provide OCSP-responses itself (OCSP
stapling). This solves this privacy risk, does not require connectivity
between client and certificate supplier and is faster.

OCSP stapling Status

On Good

Off Sufficient

Table 15 – OCSP stapling

21 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Appendix A –
Further considerations

Forward secrecy

Forward secrecy is a mechanism to maintain the confidentiality of
past TLS communications in the event the secret key of a certificate
is stolen from the server. Configurations that use ECDHE or DHE for
key exchange, offer forward secrecy.

If forward secrecy is used, client and server do not directly use their
own keys for bulk encryption. A second, temporary, (ephemeral)
key is agreed upon instead that is only used for that session.
All values used are destroyed afterwards. The ephemeral key used
cannot be derived from the secret key of the certificate. Without
forward secrecy, the server’s keys (corresponding to its certificate)
are used to exchange session keys directly.

The scenario that forward secrecy protects against consists of two
steps. First, an attacker needs to eavesdrop on the communication
that is protected by TLS. Then, the attacker needs to obtain the
secret key corresponding to the public key in the certificate, for
example by hacking or the use of a court order. With access to the
secret key, an attacker can recover the session key, decrypt the
encrypted traffic and thus break the confidentiality of
communications.

Session tickets

In many applications, it is common for the client and server to
(re)establish more connections after an initial TLS connection has
been set up. TLS offers mechanisms for session resumption to
allow a client and server to skip the handshake and go straight to
the application phase. This reduces the cost of TLS session setup for
additional connections.

With Session IDs, both client and server save session state referenced
by an ID. The client presents that ID when resuming a connection.
Using this Session ID both client and server retrieve the correspond-
ing state and proceed directly to the application phase.

Session tickets are much like session IDs. A session ticket is an
encrypted copy of the session state. By asking the client to keep a
session ticket, the server no longer needs to store session ID and
state for each client. The client retains the session ticket and
presents it to the server when resuming a connection. The server
decrypts the session ticket, recovers the session state and the TLS
connection proceeds directly to the application phase. The server
needs to keep a ‘session ticket encryption key’ for this purpose.

The design of session tickets in TLS 1.0, 1.1 and 1.2 is fragile.43
An attacker that steals the session ticket encryption key can do
passive decryption on all connections that exchange or use session
tickets. This also breaks the forward secrecy property described
previously.

These issues have been corrected in TLS 1.3. The NCSC advises
organisations that want to speed up session resumption to use
TLS 1.3. If session tickets are used in older version of TLS, the
‘session ticket encryption key’ should not be stored on disk and
rotated frequently.

Random number generators

To ensure the security of cryptographic algorithms, a good source
of entropy and a good generator of random numbers (pseudo
random number generator, PRNG) are required. The source of
entropy supplies random data and is input to the PRNG. The PRNG
turns this random data into uniformly distributed random
numbers. In particular, the requirement for randomness is relevant
for (but not limited to):
	- the generation of keys for certificates;
	- the generation of temporary keys and proof of secret key

possession for forward secrecy.

43 	 Drew Springall, Zakir Durumeric, and J. Alex Halderman. “Measuring the
security harm of TLS crypto shortcuts.” Proceedings of the 2016 Internet
Measurement Conference. ACM, 2016. https://jhalderm.com/pub/papers/
forward-secrecy-imc16.pdf

https://jhalderm.com/pub/papers/forward-secrecy-imc16.pdf
https://jhalderm.com/pub/papers/forward-secrecy-imc16.pdf

22 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Generating sufficient entropy may be a bottleneck if a TLS server is
under heavy load. The addition of a hardware module (hardware
random number generator) to the server ensures the availability of
sufficient entropy. Many modern processors integrate a hardware
module to harvest randomness.

Most operating systems and TLS software libraries contain a good
random number generator. You can ask the supplier of your chosen
TLS library (or the vendor that embeds it) about the random
number generator that is used and its source of entropy.

It is known that the following random number generator is
insecure:
	- Dual EC DRBG44, 45

It is advisable to check that your TLS software library does not use
this insecure random number generator.

Certificate management

Acquiring and managing certificates is not part of these guidelines.
However, good certificate management is an important condition
for the safe deployment of TLS. That is why we list some points of
particular interest. Further instructions can be found in the
factsheet “Secure administration of digital certificates” by the
NCSC.46

	- Secret key generation Use a good random number generator to
generate the secret key. Make sure you generate this key on a
trusted system, for example a Hardware Security Module (HSM)
or a computer that is physically disconnected from the internet.
A key generated on a disconnected computer is then deployed
on the server that will offer the certificate.

	- Certificate supplier Choose a trustworthy certificate supplier
to supply and sign the certificate. Organisations within the
Dutch government may make use of certificates by PKIoverheid,
and for certain applications are obligated to do so.

	- Domain names The certificate contains a list of domain names
(fully qualified domain names, FQDNs) that it applies to. Make
sure the certificate covers all domains for which it is used,
including subdomains.

	- Extended validation Many certificate issuers also issue
Extended Validation (EV) certificates. An EV certificate provides
some assurance on the identity of the owner. Developers of
client software have been removing the prominent visual
distinctions between EV and normal certificates. EV certificates
are usually more expensive than a normal certificate. A risk
analysis can help to determine if an EV certificate is warranted.

44 	 https://csrc.nist.gov/publications/nistbul/itlbul2013_09_supplemental.
pdf

45 	 https://projectbullrun.org/dual-ec/

46 	 https://www.ncsc.nl/documenten/factsheets/2019/juni/01/
factsheet-veilig-beheer-van-digitale-certificaten

	- Files on the server The administrator of the server needs to
include intermediate CA’s between the root CA and the issued
certificate on the server. The server offers these during TLS
connections. The secret key needs to be adequately protected.
An attacker that can obtain the secret key can read or manipu-
late intercepted traffic. A secret key can be stored in an HSM. An
HSM is designed to offer physical protection against extraction
of the secret key.

	- Administration Keep an administration of all certificates that
are in use within the organisation. If a certificate needs to be
replaced, this will make it easier to determine where it is in use.
Include the expiration time for all certificates, to ensure timely
replacement. Expired certificates should never be used. Some
certificate issuers support mechanisms for automated renewal
and deployment of certificates, which may reduce the potential
for human error.

Where does a TLS connection
terminate?

The model of a client that connects to a server does not correspond
to a setup that many organisations use. For example, decryption of
TLS traffic can be centralised before it is further routed within an
internal network. This setup enables the post-processing of
network traffic. Keep in mind that TLS in such a setup only protects
up to the point where the connection terminates. Take additional
measures if confidentiality and integrity need to be guaranteed
within the organisation. A possible measure is to use a new TLS
session for this last leg.

Some organisations that provide DDoS mitigation services ask for
the secret keys of certificates that are used for TLS. They then
proceed to terminate and filter your traffic. If you want to make use
of these services, do not simply provide your secret key. This may be
in violation of internal policy or (sectoral) law. Consider switching
to a supplier that does not require you to hand over keys.47 Identify
the risks associated with handing over secret keys. Take contractual
measures to compensate for the decreased technical control and
audit the supplier to assess the extent to which the supplier
implements the agreed upon measures.

47 	 See the following as an example of a method to achieve this: https://
blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/

https://csrc.nist.gov/publications/nistbul/itlbul2013_09_supplemental.pdf
https://csrc.nist.gov/publications/nistbul/itlbul2013_09_supplemental.pdf
https://projectbullrun.org/dual-ec/
https://www.ncsc.nl/documenten/factsheets/2019/juni/01/factsheet-veilig-beheer-van-digitale-certificaten
https://www.ncsc.nl/documenten/factsheets/2019/juni/01/factsheet-veilig-beheer-van-digitale-certificaten
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/

23 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Post-quantum security

Regular use of TLS is not post-quantum secure.48 It is possible to
configure TLS to provide limited49 post-quantum security. The
NCSC advises to get specialist support for use cases that have this
requirement. For the Dutch government, such support is available
from the national communication security agency NBV.

Authenticating clients with
certificates

TLS supports mutual authentication with certificates. In mutual
authentication, the client uses a certificate to authenticate itself to
the server in addition to the server using a certificate to authenti-
cate itself to the client.

Client certificates often contain sensitive information, such as
personal data. An example is the name of the user. Before TLS 1.3,
certificates were transmitted unencrypted as part of the handshake.
If you use certificates that contain sensitive data for authentication
and rely on TLS to provide confidentiality, it is recommended to use
TLS 1.3.

48 	 More information about the implications of quantum computers for
organizations can be found in the factsheet “Post-quantum
cryptography”. https://english.ncsc.nl/publications/factsheets/2019/
juni/01/factsheet-post-quantum-cryptography

49 	 At the time of writing, such configurations lack post quantum forward
secrecy.

Certificate pinning and DANE

A client that starts a TLS session with a server, checks the X.509
certificate of the server. The client checks the chain of digital
signatures that connects the certificate to the root CA. This PKI
system is fragile because most software trusts hundreds of root
CAs. If a certificate supplier issues forged certificates the integrity
of the entire system is at risk.

Are you in control over software of both client and server? Then,
certificate pinning enables you to pin just the certificate(s) that the
client should accept. The client no longer has to check the chain of
signatures: it recognizes the certificate or it does not. A compromised
certificate authority is no longer a risk for the connection.
Alternatively, use of certificates supplied by one particular CA can
be whitelisted by pinning the intermediate or root certificate that
are used to issue them. This way, the compromise of other CAs is no
longer a risk. The connection between an app on a mobile platform
and a server is a scenario where certificate pinning can be effective.
Account for the propagation delay of changes in certificate
pinning. Clients will refuse to connect to your server after a (rapid)
change of certificate(s) if a pin cannot be updated in time.

DNS-based Authentication of Named Entities (DANE) is a technique
to enable clients to authenticate a certificate based on the Domain
Name System (DNS). The administrator of the certificate publishes
information about that certificate in a special DNS record, a TLSA
record. This allows clients to verify the authenticity of the certificate
using the PKI, but also using the TLSA record. Note that the
traditional DNS system is not trustworthy enough to use DANE.
The use of DNSSEC is necessary. An example of the use of DANE is to
authenticate TLS connections between e-mail servers.50

50 	 More information on DANE and this use case can be found in the
factsheet “Secure the connections of mail servers”.
https://english.ncsc.nl/publications/factsheets/2019/juni/01/
factsheet-secure-the-connections-of-mail-servers

https://english.ncsc.nl/publications/factsheets/2019/juni/01/factsheet-post-quantum-cryptography
https://english.ncsc.nl/publications/factsheets/2019/juni/01/factsheet-post-quantum-cryptography
https://english.ncsc.nl/publications/factsheets/2019/juni/01/factsheet-secure-the-connections-of-mail-servers
https://english.ncsc.nl/publications/factsheets/2019/juni/01/factsheet-secure-the-connections-of-mail-servers

24 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Appendix B –
Changes to these guidelines

These guidelines will be updated for new versions of TLS and new
insights into the (in)security of certain configurations. The security
of TLS is the continuous subject of research. The coming years will
bring the discovery of additional vulnerabilities. In addition,
additional versions or configurations of TLS will be standardized.

Validity

The latest version of these guidelines can always be found on the
website of the NCSC. The NCSC periodically evaluates the validity of
its advice. These guidelines are valid unless updated and do not
expire.

Critical changes

If an immediate change of these guidelines is required, it will be
published as an addendum to the most recent version of the
guidelines. This may occur if research shows that certain TLS
configurations have become insecure.
An addendum will be published on the website of the NCSC and
communicated to NCSC partners. A publication of an addendum
will also be announced using the Twitter account of the
NCSC (@ncsc_nl) or a then suitable medium.

New versions

Larger changes will be implemented in newer versions of these
guidelines. A new version of the guidelines includes information
that was part of earlier addenda. New versions will be distributed in
the same manner as addenda: published on the website of the
NCSC, sent to NCSC partners and using the NCSC Twitter account.

25 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Appendix C –
List of cipher suites

Using TLS the client and server agree on an algorithm selection to
use in subsequent encrypted communication.
An algorithm selection is a set with four elements, one crypto-
graphic algorithm for key exchange, one cryptographic algorithm
for digital signatures, one cryptographic algorithm for bulk
encryption and one cryptographic algorithm for hashing. In TLS
1.3, the set containing only these last two elements is known as a
cipher suite. Prior to TLS 1.3, a cipher suite referred to what these
guidelines call an algorithm selection.

This appendix provides an overview of cipher suites and their
security level. This notation can be useful when configuring
software. Refer to Figure 1 in the chapter Guidelines illustrates the
cipher suite notation in TLS prior to TLS 1.3.

Not included in the cipher suite notation are: versions; hash functions
for certificate verification; hash functions for key exchange; key sizes & choice
of groups; and options. These can be found in their respective
sections in the chapter Versions, algorithms and options. For ordering,
refer to the section Prefer faster and safer algorithms in the same
chapter.

Good
TLS_AES_256_GCM_SHA38451

TLS_CHACHA20_POLY1305_SHA25651

TLS_AES_128_GCM_SHA25651

Sufficient
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA38452

TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA25652

51 	 When used in combination with Good algorithms for key exchange and
certificate verification. See Figure 2 in chapter Versions, algorithms and
options for an example that results in a lower security level.

52	 These algorithm selections, combined with TLS 1.3 are Good. However,
the (old) ciper suite notation used here will frequently result in the use of
at most TLS 1.2 in software, which is Sufficient.

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA25652

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA38452

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA25652

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA25652
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256
TLS_DHE_RSA_WITH_AES_128_CBC_SHA

Phase out
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA

26 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Appendix D –
Glossary

Glossary

3DES See Bulk encryption

AEAD Algorithms for Bulk encryption that provide Authenticated Encryption with Associated

Data (AEAD) tightly integrate authentication and encryption. Popular AEAD algorithms

for Bulk encryption include AES-GCM and ChaCha20-Poly1305.

AES See Bulk encryption

Algorithm selection An algorithm selection is a set with four elements, one cryptographic algorithm for key

exchange, one cryptographic algorithm for digital signatures, one cryptographic

algorithm for bulk encryption and one cryptographic algorithm for hashing. In TLS 1.3,

the set containing only these last two elements is known as a cipher suite. Prior to TLS

1.3, a cipher suite referred to what these guidelines call an algorithm selection.

Using TLS the client and server agree on an algorithm selection to use in subsequent

encrypted communication. See key exchange, digital signature, bulk encryption, hash

function and cipher suite.

Bulk encryption Bulk encryption is the process during the application phase whereby data is enciphered

using the key established during key exchange. Encipherment uses an algorithm for

symmetric encryption. Well-known examples of such algorithms are AES-GCM,

ChaCha20 and 3DES-CBC.

CA See Certificate verification

CAMELLIA See Bulk encryption

CBC See Mode of operation

CCM See Mode of operation

Certificate See Certificate verification

Certificate verifica-

tion

The server offers a certificate to the client during a TLS session. This certificate is digitally

signed by a certificate authority (CA). The certificate authority is a trusted entity for the

client. The client verifies the digital signature by the certificate authority. This establishes

whether the certificate has been issued by the certificate authority. The algorithm for

certificate validation is the algorithm the certificate authority uses for its digital

signature. Well-known examples are RSA and ECDSA.

ChaCha20-Poly1305 See Bulk encryption

Cipher suite A cipher suite contains an algorithm for bulk encryption and an algorithm for hashing.

Cipher suites before TLS 1.3 also include the algorithms for key exchange and digital

signatures. These guidelines follow the new narrow TLS 1.3 definition for cipher suite.

See algorithm selection.

27 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Glossary

DANE DNS-based Authentication of Named Entities (DANE) is a technique to enable clients to

authenticate a certificate based on the Domain Name System (DNS).

(D)DoS attack A Denial of Service (DoS) attack is an attack whereby a computer is made unavailable, for

example by means of a flood of requests. The requests originate from a single computer

system. In a Distributed Denial of Service (DDoS) attack, requests originate not from a

single but from a large number of computer systems.

DES See Bulk encryption

DHE See Key exchange

Diffie-Hellman See Key exchange

DNS The Domain Name System (DNS) is a distributed system to answer queries for informa-

tion on domain names. A typical query may concern the IP-address of a computer

corresponding to a domain name, or the computer that handles the e-mail for a

particular domain name. DNS Security Extensions (DNSSEC) can improve the trustworthi-

ness of information in DNS. DNSSEC also enables the use of DNS for new purposes, such

as DANE.

DNSSEC See DNS

DSS See Certificate verification

ECDHE See Key exchange

ECDSA See Certificate verification

ECC See Elliptic curve

EdDSA See Certificate verification

Elliptic curve See Mathematical structure

Finite field See Mathematical structure

Forward Secrecy Forward secrecy is a mechanism to maintain the confidentiality of past TLS communicati-

ons in the event the secret key of a certificate is stolen. Cipher suites that employ key

exchanges based on ECDHE or DHE offer forward secrecy.

GCM See Mode of operation

Handshake The handshake is the phase of the TLS protocol where client and server agree on the way

data is to be exchanged. The handshake phase is followed by the application phase where

client and server exchange enciphered data.

Hash function A hash function is a mathematical function that maps input data into a digital fingerprint.

In general, the input is no longer retrievable from the result. Hash functions are used in

TLS as a component in digital signatures, the generation of random numbers (PRF) and

for bulk encryption (MAC). Examples of hash functions include MD5, SHA-1 and SHA-256.

Hashing See Hash function

https HTTP Secure (https) is a protocol that consists of the establishment of a TLS session that

is then used to exchange HTTP traffic. This way communication with a webserver is

protected against eavesdropping and manipulation in transit.

IETF The Internet Engineering Task Force (IETF) is an organization that designs open standards

for the internet. The standards are documented in so-called Requests for Comments

(RFC’s). The IETF does not have authority to enforce the use of standards that they design.

Key A key is some secret data used for cryptographic computations. Encrypted data can be

decrypted using the corresponding key. In symmetric algorithms for encipherment, the

entire key is secret. In asymmetric algorithms for encipherment, the key consists of two

parts: a public part and a secret part. The public part of the key is called the public key.

This part is not kept secret. The secret part is called the secret key.

28 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

Glossary

Key exchange The client and server in a TLS session need a key to start bulk encryption of data.

Exchanging a key happens using an algorithm for key exchange. A special algorithm is

necessary because the connection is not yet encrypted during the handshake. Examples

of algorithms for key exchange are DHE, ECDHE and RSA.

Mathematical

structure

Elliptic Curves and Finite fields are mathematical structures useable for computation.

Another example of such a mathematical structure is the set of integers. Elliptic curves

can be used for cryptography, so called Elliptic Curve Cryptography (ECC). EdDSA, ECDSA

and ECDHE are algorithms based on ECC. Finite fields can also be used for cryptography.

DHE is an algorithm based on finite field cryptography.

MD5 See Hash function

Mode of operation An algorithm for bulk encryption can act on blocks of data (block cipher) or on a stream of

data (stream cipher). When using a block cipher, the enciphered blocks need to be safely

joined together. The mode of operation is the way these blocks are joined. Examples of

modes of operations are CBC and GCM.

PKI See Public Key Infrastructure

Secret key See Key

Public key See Key

Public Key Infra-

structure

A Public Key Infrastructure (PKI) is a hierarchical ordering of certificates where the higher

certificates vouch for the authenticity of lower certificates using a digital signature. If a

client trusts the highest certificates in the PKI, then it can also trust the lower certificates

by checking the signatures on the intermediate certificates. The certificates that a

certificate authority issues together with the root certificate together form a PKI.

RSA RSA is an algorithm for key exchange and certificate verification. See both topics.

Secret key See Key

Security equivalent The security equivalent is a measure to compare the cryptographic strength of crypto-

graphic systems. Security equivalents are expressed in bits. The strength of a cryptograp-

hic system depends on the algorithm used, the key length and the state of art of attacks

on the algorithm. For example: ECDSA used with a key length of 256 bit and AES with a

key length of 128 bit both have a security equivalent of 128 bit, based on the current

understanding of cryptologic attacks on these algorithms.

SHA-1 See Hash function

SHA-256, SHA-384,

SHA-512

See Hash function

Software library A software library is software that provides functionality for use by programmers of

other software. By using a software library, a programmer can build upon the work of

others. This way, she does not have to build all functionality by herself. TLS use in

software generally relies on a software library.

SSL Secure Sockets Layer (SSL) is the old name for Transport Layer Security (TLS). Though no

longer called SSL following the release of TLS 1.0 (1999), the acronym SSL remains

popular.

VPN A Virtual Private Network (VPN) is a network consisting of computers connected by

non-trusted links. Encryption enables the trustworthy exchange of data between these

computers.

29 | ncsc | IT Security Guidelines for Transport Layer Security (TLS)

References

1.	 CA/Browser forum. CA/Browser Forum Baseline Requirements.
CA-Browser Forum BR 1.7.3. [Online] October 2020.
https://cabforum.org/baseline-requirements-documents/

2.	 Federal Office for Information Security (BSI). Cryptographic
Mechanisms: Recommendations and Key Lengths.
BSI TR-02102-1 v2020-01, [Online] October 2020.
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/
Publications/TechGuidelines/TG02102/BSI-TR-02102-1.
pdf?__blob=publicationFile&v=8

3.	 ECRYPT-CSA. Algorithms, Key Size and Protocols Report (2018),
H2020-ICT-2014 – Project 645421, D5.4, [Online] February 2018.
http://www.ecrypt.eu.org/csa/documents/D5.4-
FinalAlgKeySizeProt.pdf

4.	 Federal Office for Information Security (BSI). Cryptographic
Mechanisms: Recommendations and Key Lengths, Part 2 – Use
of Transport Layer Security (TLS). BSI TR-02102-2 v2020-01,
[Online] October 2020. https://www.bsi.bund.de/SharedDocs/
Downloads/EN/BSI/Publications/TechGuidelines/TG02102/
BSI-TR-02102-2.pdf?__blob=publicationFile&v=10

https://cabforum.org/baseline-requirements-documents/
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=8
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=8
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf?__blob=publicationFile&v=8
http://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
http://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=10
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=10
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-2.pdf?__blob=publicationFile&v=10

Colophon

Publication
National Cyber Security Centre (NCSC)
P.O. Box 117, 2501 CC  The Hague
Turfmarkt 147, 2511 DP  The Hague
+31 (70) 751 55 55

More information
www.ncsc.nl
info@ncsc.nl
@ncsc_nl

version 2.1 | January 2021

This information is not legally binding.

https://www.ncsc.nl
mailto:info%40ncsc.nl?subject=
https://twitter.com/ncsc_nl

	Introduction
	Purpose
	Use for procurement
	Level of security
	Key message
	Outline
	References

	1	What is Transport Layer Security?
	How TLS works
	Software libraries
	The importance of random numbers

	2	Usage guidance
	Scenario 1: Control over both client and server
	Scenario 2: Only control over the server
	Points of particular interest
	Diverging from these usage guidelines

	3	Guidelines
	Versions
	Algorithm selections
	Certificates
	Key exchange
	Elliptic curves
	Finite fields
	Other options
	Compression
	Renegotiation
	0-RTT

	Scheduling removal of Phase out configurations

	4	Versions, algorithms and options
	Versions
	Cryptographic algorithms
	Algorithms for certificate verification
	Algorithms for key exchange
	Algorithms for bulk encryption

	Key sizes and choice of groups
	RSA key size
	Supported elliptic curves
	Supported finite field groups

	Options
	Compression
	Renegotiation
	0-RTT
	OCSP stapling

	Appendix A –Further considerations
	Forward secrecy
	Session tickets
	Random number generators
	Certificate management
	Where does a TLS connection terminate?
	Post-quantum security
	Authenticating clients with certificates
	Certificate pinning and DANE

	Appendix B – Changes to these guidelines
	Validity
	Critical changes
	New versions

	Appendix C – List of cipher suites
	Appendix D – Glossary
	References

