

Help! My website is
vulnerable to SQL injection
Check your website and take precautionary
measures

SQL injection is a popular and frequently used attack on

websites, which attackers use to steal large volumes of

(client) information. Although there are other types of

attacks for capturing this information, SQL injection

appears to be a frequently used method.

A website becomes vulnerable to SQL injection when

attackers are able to influence the queries sent by a

website to a database. This enables the attacker to

extract information from the database or to change the

contents of the database through, for example, a simple

query. In this way, an SQL injection vulnerability can

endanger both the integrity as well as the confidentiality

of the information behind the website.

This factsheet explains what you must do when your

website is vulnerable to SQL injection and an attack has

been successful. In addition, the factsheet describes

which precautionary measures you can take to ensure

that you are safe from SQL injection.

Background
Many websites communicate with underlying databases in a

language that is called Structured Query Language (SQL). Websites

make use of a database to store all kinds of information. Examples

are user names and passwords for closed sections of the website or

news items. To enable communication with the database, the

website formulates a query to the database as a query in SQL.

Key facts

» A website becomes vulnerable to SQL injection when user

input is used in an unsafe manner in the queries sent by a

website to a database.

» SQL injection allows an attacker to extract random

information from a database. In certain cases the attacker can

also remove information from or simply add information to

this database.

» Victims of SQL injection are recommended that they:

» investigate the damage and cause of the incident;

» prepare and implement communications about this;

» take temporary measures during the investigation;

» restore the integrity of the database;

» remove the vulnerability by adapting code or installing the

latest software patches, and

» bring the website online again as soon as it is certain that

the vulnerability has been effectively repaired.

» SQL injection can be detected by:

» checking log files;

» checking the integrity of the database, and

» monitoring public statements about your website.

» The risk of an SQL injection vulnerability can be minimised by:

» making use of parameterised queries;

» normalising, validating and filtering user input for

undesirable input;

» using database accounts with limited user rights;

» making sensitive information in the database unreadable;

» installing the latest software updates;

» being cautious with CMS plug-ins from third parties;

» regularly carrying out security scans, and

» allowing for responsible disclosure of any vulnerabilities.

Factsheet FS-2014-05

version 1.0 | 26 January 2015

Target audience
This factsheet is geared towards developers and technical

administrators of websites. Are you the owner of a vulnerable

website, but do you have no knowledge of the technicalities of

this website? Send this factsheet to your developer or

administrator.

What is SQL injection?
SQL injection is the manipulation of the structure of SQL queries

which the website sends to the database via illicit user input.

Visitors to a website can often influence an SQL query directly or

indirectly through, for example, a search term, a form or even the

value of a cookie or the string identified by the browser (the ‘user

agent’). This is not a problem if the visitor can only influence the

contents of the query. However, if he can also alter the structure of

the query, that will give the visitor unauthorised access to the

database.

Suppose that an organisation offers the possibility via a website to

search news items based on a search term. For this purpose, the

website developer included the following SQL query in the code:

SELECT title, description

FROM news

WHERE description LIKE ‘%search term%’

This SQL query finds the title and description of news items in the

database. Here, the query restricts the result based on the search

term entered by the visitor. The problem, however, is that by

manipulating the search term, the visitor can also manipulate the

structure of the SQL query. Suppose that a attacker offers the search

term ‘search term’ UNION SELECT user name, password

FROM users; --’ to the website. The SQL query would suddenly

look like this:

SELECT title, description

FROM news

WHERE description LIKE ‘%search term’

UNION

SELECT username, password

FROM users; --%’

This SQL query does two things. Firstly, it ensures that news items

can still be retrieved. Secondly, it results in the website requesting a

list of user names and passwords from another part of the database.

In brief, the attacker has ensured that the website eventually sent a

different query to the database than intended. So, in this example,

it is possible to leak all user names and passwords from the

database through a simple query. Depending on the information

that your website stores in the database, this could also give

attackers access to other information, such as credit card numbers,

medical information and documents.

What could happen?
SQL injection offers the possibility to retrieve, manipulate and

remove information from the database, and in some cases, add

information to it. The preceding paragraph provides an example of

this. Additionally, SQL injection can be used to influence the logic

of the website, thereby bypassing an authentication mechanism, for

example.

How would I know if I have been hacked?
You can find out if your website has suffered an SQL injection attack

by monitoring your systems and by monitoring public statements

about your website. Furthermore, there's a possibility that an

external organisation or developer informs you about the presence

of the vulnerability or its misuse. The box ‘Detecting SQL injection’

contains more information on setting up monitoring mechanisms.

What can I do if I have been hacked?
An attack on your website has been successful if information from

the database has been accessed by attackers. Of course, it is not

possible to undo this, but it is important to take immediate steps to

limit the impact of the attack as much as possible and to avoid any

future misuse.

In case of an attack or suspected attack based on SQL injection we

recommend that the following measures be taken:

1. Investigate whether there was an actual incident. For this, you

should use the detection options mentioned in the box

‘Detecting SQL injection’ and carry out an automated security

scan of the website
3
 to find any SQL injection vulnerabilities by

yourself.

3 There are various tools available to automatically establish whether your website contains an SQL

injection vulnerability. A popular example of this is sqlmap (http://sqlmap.org/).

Detecting SQL injection

» Check log files for suspect messages

Check whether the log files of the web server, the website, the

application server, the database, the IPS/IDS, or the firewall

contain any suspicious items. Examples are:

» the presence of SQL commands in URLs from the web

server log; examples of these commands include SELECT,

INSERT, DROP, UNION and UPDATE
1
;

» messages from the IDS about any SQL injection attempts

detected, and

» error messages from the database, such as failed SQL

queries carried out by the website.

» Check the integrity of the database

Check if the database contains any suspicious items, such as

new, unknown or strange user names or tables.

» Monitor public statements about your website

Make use of mechanisms such as Google Alerts
2
 and Twitter

searches to ensure that you automatically receive a

notification of any statements about your website in

combination with e.g. ‘dump’, ‘hack’ or ‘sql injection’.

1 Attention should also be paid to coded versions of these key words, such as

‘DROP’, as a hex-coded version of the key word ‘DROP’. See for example:

“Character Encoding Calculator” at http://ha.ckers.org/sqlinjection/
2 https://www.google.com/alerts

2. Determine the impact of the incident. Did the leak ‘only’

pertain to e-mail addresses for example, or to passwords and

other sensitive information as well?

The previous steps may show that there was an actual incident. If

this is the case, you should take the following steps:

3. Decide who to inform, how you will do so, and what you are

going to communicate. Examples are internal parties such as

the legal department and the help desk, but also external

parties such as visitors of your website, clients, suppliers,

customers, supervisory authorities and the press.

4. Decide what to do with your website while dealing with the

incident. Obviously, you cannot simply keep the website

online. Possible temporary solutions are:

» bringing a temporary static website online as a replacement

of the normal website, and

» deactivating part of the functionality of the website.

Never simply restore a backup of the entire system or the

database. For chances are that this will replace a vulnerable

system that will be hacked again afterwards.

5. Restore the integrity of the database if it appears that attackers

have not only stolen information from the database, but have

also made unauthorised alterations to the database. For

example, restore a backup of which you are certain that this

backup was made prior to the hack.

6. Repair the vulnerability:

» If you use a standard software product (like a CMS), you

should at least install the latest updates of this software. If

this does not solve the problem, you should report this

problem to the supplier as soon as possible. The supplier

can then release an update later.

» If you developed the website yourself (or had it developed),

you must make adjustments to your website yourself (or

have this done for you) in order to remove the vulnerability.

Evaluate the entire website, not only the attacked parts. In

so doing, you should make use of the measures under the

heading ‘How to prevent SQL injection in my website?’.

7. Have a thorough penetration test carried out on the website.

In any case, you should have the SQL injection vulnerabilities

checked out, and preferably other types of vulnerabilities as

well. Repair the vulnerabilities found.

8. Restore the functionalities of your website as soon as it is clear

that the vulnerabilities have been rectified effectively.

How to prevent SQL injection in my website?
Of course, it is always better to prevent the presence of any SQL

injection vulnerabilities in your website. Apart from measures to

prevent SQL injection vulnerabilities, the NCSC ‘ICT Security

Guidelines for Web Applications’ also contain measures for the

prevention of all kinds of other vulnerabilities. The below

measures, most of which are included in these guidelines, are

important to prevent SQL injection vulnerabilities (references to the

specific measures in the guidelines are between brackets):

» Make use of parameterised queries when setting up an SQL query

(guideline B3-5). This means that an SQL query does not come

about by dynamically pasting all kinds of strings together, but by

defining a static SQL query and ‘pasting’ parameters in this query

later. All modern programming languages support this concept.

» Normalise and validate all user input (guidelines B3-3 and B3-6).

This means that the website checks whether the input it receives

corresponds with the expected input. For instance, any (Dutch)

postcode entered must always consist of four figures and two

letters. The website should not accept any input which is not

provided in this format.

» Filter for undesirable input (guideline B3-1). After normalising

and validating the input, the website checks whether any

undesirable input, e.g. certain ‘hazardous’ key words, remains.

For instance, the use of the words SELECT and DROP in the input

could indicate a possible attempt of SQL injection.

» Ensure that the website uses a database account with limited

rights (guideline B0-12). If, for example, the website may only

consult information and not make any changes, it will not be

possible to carry out changes in the database using SQL

injection. Take note that these measures have an effect on the

integrity of the database but not on the confidentiality.

» Encrypt data in the database (guideline B5-3). Encrypting data in

the database or otherwise making them unreadable (hashing)

does not reduce the chance of an SQL injection vulnerability, but

does reduce the damage any such vulnerability may cause.

Block and restore access
If the login data of your users were leaked as well, it is

important that you do not only notify the users about

this, but also prevent any misuse of these data. You

should therefore consider blocking user access initially.

After having restored the functionalities, you can offer

the option to change login data in a safe manner (for

example through e-mail verification) to allow users to

access your website again.

» Always install the latest versions of the software used by the

website (guideline B0-7). This not only concerns the web server

and the website, but also for example, databases, libraries and

plug-ins.

» Be careful with the use of all kinds of plug-ins when you use a

content management system (CMS). Third parties (other than

CMS developers) often develop all kinds of plug-ins for this kind

of systems and do not always pay adequate attention to their

security features. Be aware that such plug-ins often also have

direct access to the database and can thus introduce an SQL

injection vulnerability which could have consequences for the

entire website.

» Regularly carry out penetration tests and security scans of the

website to identify vulnerabilities (guidelines B0-8 and B0-9).

» Finally, allow for responsible disclosure of any vulnerabilities in

your website. By publishing a responsible disclosure policy on

your website, you will show how people and organisations can

report any vulnerabilities such as SQL injection vulnerabilities,

to you, and what the process entails after such reporting. You

could make use of the NCSC ‘Responsible Disclosure Guidelines’
4

when drawing up such a policy.

In conclusion
SQL injection is only one of the vulnerabilities that could be present

in a website. A safe website is therefore not only protected against

this vulnerability, but also against all kinds of other vulnerabilities.

The NCSC has drawn up the “ICT Security Guidelines for Web

Applications” (only available in Dutch) in order to help organisations

with this. More information about these guidelines and its contents

can be found on the NCSC website via https://www.ncsc.nl
5
.

4 https://www.ncsc.nl/actueel/nieuwsberichten/leidraad-responsible-disclosure.html
5 https://www.ncsc.nl/dienstverlening/expertise-advies/kennisdeling/whitepapers/ict-

beveiligingsrichtlijnen-voor-webapplicaties.html

List of most important steps after an SQL injection

1. Investigate whether there was an actual incident.

2. Determine the impact of the incident. What information has been leaked?

3. Decide who to inform, how you will do so, and what you are going to communicate.

4. Decide what to do with your website while dealing with the incident. Temporarily switch off functionalities, for example.

5. Restore the integrity of the database.

6. Repair the vulnerability by installing updates or by altering software you developed yourself.

7. Have a thorough penetration test carried out in order to identify any other vulnerabilities in your website.

8. Restore the functionalities of your website as soon as it is clear that the vulnerabilities have been rectified effectively.

Publication by National Cyber Security Centre

Turfmarkt 147 | 2511 DP The Hague

PO Box 117 | 2501 CC The Hague
www.ncsc.nl | info@ncsc.nl | T +31 (0)70-751 55 55 | F +31 (0)70-322 25 37
Publication no: FS-2014-05 | No rights can be derived from this information.

